Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Steven Nguyen Exponents and divisibility posqsqznn  
				
		 
		
			
		 
		Description:   When a positive rational squared is an integer, the rational is a
       positive integer. zsqrtelqelz  with all terms squared and positive.
       (Contributed by SN , 23-Aug-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						posqsqznn.1    ⊢   φ   →    A   2     ∈   ℤ          
					 
					
						posqsqznn.2    ⊢   φ   →   A  ∈   ℚ          
					 
					
						posqsqznn.3    ⊢   φ   →    0   <  A         
					 
				
					Assertion 
					posqsqznn    ⊢   φ   →   A  ∈   ℕ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							posqsqznn.1   ⊢   φ   →    A   2     ∈   ℤ          
						
							2 
								
							 
							posqsqznn.2   ⊢   φ   →   A  ∈   ℚ          
						
							3 
								
							 
							posqsqznn.3   ⊢   φ   →    0   <  A         
						
							4 
								2 
							 
							qred   ⊢   φ   →   A  ∈   ℝ          
						
							5 
								
							 
							0red   ⊢   φ   →    0   ∈   ℝ          
						
							6 
								5  4  3 
							 
							ltled   ⊢   φ   →    0   ≤  A         
						
							7 
								4  6 
							 
							sqrtsqd   ⊢   φ   →     A   2       =  A         
						
							8 
								7  2 
							 
							eqeltrd   ⊢   φ   →     A   2       ∈   ℚ          
						
							9 
								
							 
							zsqrtelqelz   ⊢     A   2     ∈   ℤ     ∧     A   2       ∈   ℚ      →     A   2       ∈   ℤ          
						
							10 
								1  8  9 
							 
							syl2anc   ⊢   φ   →     A   2       ∈   ℤ          
						
							11 
								7  10 
							 
							eqeltrrd   ⊢   φ   →   A  ∈   ℤ          
						
							12 
								
							 
							elnnz   ⊢   A  ∈   ℕ     ↔    A  ∈   ℤ     ∧    0   <  A          
						
							13 
								11  3  12 
							 
							sylanbrc   ⊢   φ   →   A  ∈   ℕ