Metamath Proof Explorer


Theorem postc

Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φKProset
postc.b B=BaseC
Assertion postc φCPosetxByBx𝑐Cyx=y

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φKProset
3 postc.b B=BaseC
4 1 2 prstcprs φCProset
5 eqid C=C
6 3 5 ispos2 CPosetCProsetxByBxCyyCxx=y
7 6 baib CProsetCPosetxByBxCyyCxx=y
8 4 7 syl φCPosetxByBxCyyCxx=y
9 1 adantr Could not format ( ( ph /\ ( x e. B /\ y e. B ) ) -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C = ( ProsetToCat ` K ) ) with typecode |-
10 2 adantr φxByBKProset
11 9 10 prstcthin Could not format ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. ThinCat ) with typecode |-
12 simprl φxByBxB
13 simprr φxByByB
14 eqid HomC=HomC
15 11 3 12 13 14 thinccic φxByBx𝑐CyxHomCyyHomCx
16 eqidd φxByBC=C
17 eqidd φxByBHomC=HomC
18 12 3 eleqtrdi φxByBxBaseC
19 13 3 eleqtrdi φxByByBaseC
20 9 10 16 17 18 19 prstchom φxByBxCyxHomCy
21 9 10 16 17 19 18 prstchom φxByByCxyHomCx
22 20 21 anbi12d φxByBxCyyCxxHomCyyHomCx
23 15 22 bitr4d φxByBx𝑐CyxCyyCx
24 23 imbi1d φxByBx𝑐Cyx=yxCyyCxx=y
25 24 2ralbidva φxByBx𝑐Cyx=yxByBxCyyCxx=y
26 8 25 bitr4d φCPosetxByBx𝑐Cyx=y