Metamath Proof Explorer


Theorem postc

Description: The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses postc.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
postc.k φ K Proset
postc.b B = Base C
Assertion postc φ C Poset x B y B x 𝑐 C y x = y

Proof

Step Hyp Ref Expression
1 postc.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 postc.k φ K Proset
3 postc.b B = Base C
4 1 2 prstcprs φ C Proset
5 eqid C = C
6 3 5 ispos2 C Poset C Proset x B y B x C y y C x x = y
7 6 baib C Proset C Poset x B y B x C y y C x x = y
8 4 7 syl φ C Poset x B y B x C y y C x x = y
9 1 adantr Could not format ( ( ph /\ ( x e. B /\ y e. B ) ) -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C = ( ProsetToCat ` K ) ) with typecode |-
10 2 adantr φ x B y B K Proset
11 9 10 prstcthin Could not format ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> C e. ThinCat ) with typecode |-
12 simprl φ x B y B x B
13 simprr φ x B y B y B
14 eqid Hom C = Hom C
15 11 3 12 13 14 thinccic φ x B y B x 𝑐 C y x Hom C y y Hom C x
16 eqidd φ x B y B C = C
17 eqidd φ x B y B Hom C = Hom C
18 12 3 eleqtrdi φ x B y B x Base C
19 13 3 eleqtrdi φ x B y B y Base C
20 9 10 16 17 18 19 prstchom φ x B y B x C y x Hom C y
21 9 10 16 17 19 18 prstchom φ x B y B y C x y Hom C x
22 20 21 anbi12d φ x B y B x C y y C x x Hom C y y Hom C x
23 15 22 bitr4d φ x B y B x 𝑐 C y x C y y C x
24 23 imbi1d φ x B y B x 𝑐 C y x = y x C y y C x x = y
25 24 2ralbidva φ x B y B x 𝑐 C y x = y x B y B x C y y C x x = y
26 8 25 bitr4d φ C Poset x B y B x 𝑐 C y x = y