Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | thincsect.c | No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |- | |
thincsect.b | |
||
thincsect.x | |
||
thincsect.y | |
||
thinciso.h | |
||
Assertion | thinccic | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.c | Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |- | |
2 | thincsect.b | |
|
3 | thincsect.x | |
|
4 | thincsect.y | |
|
5 | thinciso.h | |
|
6 | eqid | |
|
7 | 1 | thinccd | |
8 | 2 5 6 7 3 4 | isohom | |
9 | 8 | sselda | |
10 | 1 | adantr | Could not format ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) with typecode |- |
11 | 3 | adantr | |
12 | 4 | adantr | |
13 | simpr | |
|
14 | 10 2 11 12 5 6 13 | thinciso | |
15 | 9 14 | biadanid | |
16 | 15 | exbidv | |
17 | 6 2 7 3 4 | cic | |
18 | n0 | |
|
19 | 18 | anbi1i | |
20 | 19.41v | |
|
21 | 19 20 | bitr4i | |
22 | 21 | a1i | |
23 | 16 17 22 | 3bitr4d | |