Metamath Proof Explorer


Theorem thinccic

Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B = Base C
thincsect.x φ X B
thincsect.y φ Y B
thinciso.h H = Hom C
Assertion thinccic φ X 𝑐 C Y X H Y Y H X

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B = Base C
3 thincsect.x φ X B
4 thincsect.y φ Y B
5 thinciso.h H = Hom C
6 eqid Iso C = Iso C
7 1 thinccd φ C Cat
8 2 5 6 7 3 4 isohom φ X Iso C Y X H Y
9 8 sselda φ f X Iso C Y f X H Y
10 1 adantr Could not format ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) with typecode |-
11 3 adantr φ f X H Y X B
12 4 adantr φ f X H Y Y B
13 simpr φ f X H Y f X H Y
14 10 2 11 12 5 6 13 thinciso φ f X H Y f X Iso C Y Y H X
15 9 14 biadanid φ f X Iso C Y f X H Y Y H X
16 15 exbidv φ f f X Iso C Y f f X H Y Y H X
17 6 2 7 3 4 cic φ X 𝑐 C Y f f X Iso C Y
18 n0 X H Y f f X H Y
19 18 anbi1i X H Y Y H X f f X H Y Y H X
20 19.41v f f X H Y Y H X f f X H Y Y H X
21 19 20 bitr4i X H Y Y H X f f X H Y Y H X
22 21 a1i φ X H Y Y H X f f X H Y Y H X
23 16 17 22 3bitr4d φ X 𝑐 C Y X H Y Y H X