Metamath Proof Explorer


Theorem thinccic

Description: In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B=BaseC
thincsect.x φXB
thincsect.y φYB
thinciso.h H=HomC
Assertion thinccic φX𝑐CYXHYYHX

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B=BaseC
3 thincsect.x φXB
4 thincsect.y φYB
5 thinciso.h H=HomC
6 eqid IsoC=IsoC
7 1 thinccd φCCat
8 2 5 6 7 3 4 isohom φXIsoCYXHY
9 8 sselda φfXIsoCYfXHY
10 1 adantr Could not format ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) with typecode |-
11 3 adantr φfXHYXB
12 4 adantr φfXHYYB
13 simpr φfXHYfXHY
14 10 2 11 12 5 6 13 thinciso φfXHYfXIsoCYYHX
15 9 14 biadanid φfXIsoCYfXHYYHX
16 15 exbidv φffXIsoCYffXHYYHX
17 6 2 7 3 4 cic φX𝑐CYffXIsoCY
18 n0 XHYffXHY
19 18 anbi1i XHYYHXffXHYYHX
20 19.41v ffXHYYHXffXHYYHX
21 19 20 bitr4i XHYYHXffXHYYHX
22 21 a1i φXHYYHXffXHYYHX
23 16 17 22 3bitr4d φX𝑐CYXHYYHX