Description: In a thin category, F : X --> Y is an isomorphism iff there is a morphism from Y to X . (Contributed by Zhi Wang, 25-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | thincsect.c | No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |- | |
thincsect.b | |
||
thincsect.x | |
||
thincsect.y | |
||
thinciso.h | |
||
thinciso.i | |
||
thinciso.f | |
||
Assertion | thinciso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.c | Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |- | |
2 | thincsect.b | |
|
3 | thincsect.x | |
|
4 | thincsect.y | |
|
5 | thinciso.h | |
|
6 | thinciso.i | |
|
7 | thinciso.f | |
|
8 | eqid | |
|
9 | 1 | thinccd | |
10 | 2 5 6 8 9 3 4 7 | dfiso3 | |
11 | simprl | |
|
12 | 7 | ad2antrr | |
13 | 1 | ad2antrr | Could not format ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> C e. ThinCat ) with typecode |- |
14 | 4 | ad2antrr | |
15 | 3 | ad2antrr | |
16 | 13 2 14 15 8 5 | thincsect | |
17 | 11 12 16 | mpbir2and | |
18 | 13 2 15 14 8 5 | thincsect | |
19 | 12 11 18 | mpbir2and | |
20 | 17 19 | jca | |
21 | trud | |
|
22 | 21 | reximdva0 | |
23 | 20 22 | reximddv | |
24 | rexn0 | |
|
25 | 24 | adantl | |
26 | 23 25 | impbida | |
27 | 10 26 | bitr4d | |