Metamath Proof Explorer


Theorem thinciso

Description: In a thin category, F : X --> Y is an isomorphism iff there is a morphism from Y to X . (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses thincsect.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
thincsect.b B=BaseC
thincsect.x φXB
thincsect.y φYB
thinciso.h H=HomC
thinciso.i I=IsoC
thinciso.f φFXHY
Assertion thinciso φFXIYYHX

Proof

Step Hyp Ref Expression
1 thincsect.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
2 thincsect.b B=BaseC
3 thincsect.x φXB
4 thincsect.y φYB
5 thinciso.h H=HomC
6 thinciso.i I=IsoC
7 thinciso.f φFXHY
8 eqid SectC=SectC
9 1 thinccd φCCat
10 2 5 6 8 9 3 4 7 dfiso3 φFXIYgYHXgYSectCXFFXSectCYg
11 simprl φYHXgYHXgYHX
12 7 ad2antrr φYHXgYHXFXHY
13 1 ad2antrr Could not format ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ ( Y H X ) =/= (/) ) /\ ( g e. ( Y H X ) /\ T. ) ) -> C e. ThinCat ) with typecode |-
14 4 ad2antrr φYHXgYHXYB
15 3 ad2antrr φYHXgYHXXB
16 13 2 14 15 8 5 thincsect φYHXgYHXgYSectCXFgYHXFXHY
17 11 12 16 mpbir2and φYHXgYHXgYSectCXF
18 13 2 15 14 8 5 thincsect φYHXgYHXFXSectCYgFXHYgYHX
19 12 11 18 mpbir2and φYHXgYHXFXSectCYg
20 17 19 jca φYHXgYHXgYSectCXFFXSectCYg
21 trud φgYHX
22 21 reximdva0 φYHXgYHX
23 20 22 reximddv φYHXgYHXgYSectCXFFXSectCYg
24 rexn0 gYHXgYSectCXFFXSectCYgYHX
25 24 adantl φgYHXgYSectCXFFXSectCYgYHX
26 23 25 impbida φYHXgYHXgYSectCXFFXSectCYg
27 10 26 bitr4d φFXIYYHX