Metamath Proof Explorer


Theorem ppieq0

Description: The prime-counting function ppi is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppieq0 Aπ_A=0A<2

Proof

Step Hyp Ref Expression
1 2re 2
2 lenlt 2A2A¬A<2
3 1 2 mpan A2A¬A<2
4 ppinncl A2Aπ_A
5 4 nnne0d A2Aπ_A0
6 5 ex A2Aπ_A0
7 3 6 sylbird A¬A<2π_A0
8 7 necon4bd Aπ_A=0A<2
9 reflcl AA
10 9 adantr AA<2A
11 1red AA<21
12 2z 2
13 fllt A2A<2A<2
14 12 13 mpan2 AA<2A<2
15 14 biimpa AA<2A<2
16 df-2 2=1+1
17 15 16 breqtrdi AA<2A<1+1
18 flcl AA
19 18 adantr AA<2A
20 1z 1
21 zleltp1 A1A1A<1+1
22 19 20 21 sylancl AA<2A1A<1+1
23 17 22 mpbird AA<2A1
24 ppiwordi A1A1π_Aπ_1
25 10 11 23 24 syl3anc AA<2π_Aπ_1
26 ppifl Aπ_A=π_A
27 26 adantr AA<2π_A=π_A
28 ppi1 π_1=0
29 28 a1i AA<2π_1=0
30 25 27 29 3brtr3d AA<2π_A0
31 ppicl Aπ_A0
32 31 adantr AA<2π_A0
33 nn0le0eq0 π_A0π_A0π_A=0
34 32 33 syl AA<2π_A0π_A=0
35 30 34 mpbid AA<2π_A=0
36 35 ex AA<2π_A=0
37 8 36 impbid Aπ_A=0A<2