Metamath Proof Explorer


Theorem ppieq0

Description: The prime-counting function ppi is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppieq0 A π _ A = 0 A < 2

Proof

Step Hyp Ref Expression
1 2re 2
2 lenlt 2 A 2 A ¬ A < 2
3 1 2 mpan A 2 A ¬ A < 2
4 ppinncl A 2 A π _ A
5 4 nnne0d A 2 A π _ A 0
6 5 ex A 2 A π _ A 0
7 3 6 sylbird A ¬ A < 2 π _ A 0
8 7 necon4bd A π _ A = 0 A < 2
9 reflcl A A
10 9 adantr A A < 2 A
11 1red A A < 2 1
12 2z 2
13 fllt A 2 A < 2 A < 2
14 12 13 mpan2 A A < 2 A < 2
15 14 biimpa A A < 2 A < 2
16 df-2 2 = 1 + 1
17 15 16 breqtrdi A A < 2 A < 1 + 1
18 flcl A A
19 18 adantr A A < 2 A
20 1z 1
21 zleltp1 A 1 A 1 A < 1 + 1
22 19 20 21 sylancl A A < 2 A 1 A < 1 + 1
23 17 22 mpbird A A < 2 A 1
24 ppiwordi A 1 A 1 π _ A π _ 1
25 10 11 23 24 syl3anc A A < 2 π _ A π _ 1
26 ppifl A π _ A = π _ A
27 26 adantr A A < 2 π _ A = π _ A
28 ppi1 π _ 1 = 0
29 28 a1i A A < 2 π _ 1 = 0
30 25 27 29 3brtr3d A A < 2 π _ A 0
31 ppicl A π _ A 0
32 31 adantr A A < 2 π _ A 0
33 nn0le0eq0 π _ A 0 π _ A 0 π _ A = 0
34 32 33 syl A A < 2 π _ A 0 π _ A = 0
35 30 34 mpbid A A < 2 π _ A = 0
36 35 ex A A < 2 π _ A = 0
37 8 36 impbid A π _ A = 0 A < 2