Metamath Proof Explorer


Theorem ppisval2

Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion ppisval2 A2M0A=MA

Proof

Step Hyp Ref Expression
1 ppisval A0A=2A
2 1 adantr A2M0A=2A
3 fzss1 2M2AMA
4 3 adantl A2M2AMA
5 4 ssrind A2M2AMA
6 simpr A2MxMAxMA
7 elin xMAxMAx
8 6 7 sylib A2MxMAxMAx
9 8 simprd A2MxMAx
10 prmuz2 xx2
11 9 10 syl A2MxMAx2
12 8 simpld A2MxMAxMA
13 elfzuz3 xMAAx
14 12 13 syl A2MxMAAx
15 elfzuzb x2Ax2Ax
16 11 14 15 sylanbrc A2MxMAx2A
17 16 9 elind A2MxMAx2A
18 5 17 eqelssd A2M2A=MA
19 2 18 eqtrd A2M0A=MA