Metamath Proof Explorer


Theorem prcofvalg

Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcofvalg.b B = D Func E
prcofvalg.n N = D Nat E
prcofvalg.f φ F U
prcofvalg.p φ P V
prcofvalg.d φ 1 st P = D
prcofvalg.e φ 2 nd P = E
Assertion prcofvalg Could not format assertion : No typesetting found for |- ( ph -> ( P -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcofvalg.b B = D Func E
2 prcofvalg.n N = D Nat E
3 prcofvalg.f φ F U
4 prcofvalg.p φ P V
5 prcofvalg.d φ 1 st P = D
6 prcofvalg.e φ 2 nd P = E
7 df-prcof Could not format -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) : No typesetting found for |- -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) with typecode |-
8 7 a1i Could not format ( ph -> -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) ) : No typesetting found for |- ( ph -> -o.F = ( p e. _V , f e. _V |-> [_ ( 1st ` p ) / d ]_ [_ ( 2nd ` p ) / e ]_ [_ ( d Func e ) / b ]_ <. ( k e. b |-> ( k o.func f ) ) , ( k e. b , l e. b |-> ( a e. ( k ( d Nat e ) l ) |-> ( a o. ( 1st ` f ) ) ) ) >. ) ) with typecode |-
9 fvexd φ p = P f = F 1 st p V
10 simprl φ p = P f = F p = P
11 10 fveq2d φ p = P f = F 1 st p = 1 st P
12 5 adantr φ p = P f = F 1 st P = D
13 11 12 eqtrd φ p = P f = F 1 st p = D
14 fvexd φ p = P f = F d = D 2 nd p V
15 10 adantr φ p = P f = F d = D p = P
16 15 fveq2d φ p = P f = F d = D 2 nd p = 2 nd P
17 6 ad2antrr φ p = P f = F d = D 2 nd P = E
18 16 17 eqtrd φ p = P f = F d = D 2 nd p = E
19 ovexd φ p = P f = F d = D e = E d Func e V
20 simplr φ p = P f = F d = D e = E d = D
21 simpr φ p = P f = F d = D e = E e = E
22 20 21 oveq12d φ p = P f = F d = D e = E d Func e = D Func E
23 22 1 eqtr4di φ p = P f = F d = D e = E d Func e = B
24 simpr φ p = P f = F d = D e = E b = B b = B
25 simp-4r φ p = P f = F d = D e = E b = B p = P f = F
26 25 simprd φ p = P f = F d = D e = E b = B f = F
27 26 oveq2d φ p = P f = F d = D e = E b = B k func f = k func F
28 24 27 mpteq12dv φ p = P f = F d = D e = E b = B k b k func f = k B k func F
29 20 21 oveq12d φ p = P f = F d = D e = E d Nat e = D Nat E
30 29 2 eqtr4di φ p = P f = F d = D e = E d Nat e = N
31 30 oveqdr φ p = P f = F d = D e = E b = B k d Nat e l = k N l
32 26 fveq2d φ p = P f = F d = D e = E b = B 1 st f = 1 st F
33 32 coeq2d φ p = P f = F d = D e = E b = B a 1 st f = a 1 st F
34 31 33 mpteq12dv φ p = P f = F d = D e = E b = B a k d Nat e l a 1 st f = a k N l a 1 st F
35 24 24 34 mpoeq123dv φ p = P f = F d = D e = E b = B k b , l b a k d Nat e l a 1 st f = k B , l B a k N l a 1 st F
36 28 35 opeq12d φ p = P f = F d = D e = E b = B k b k func f k b , l b a k d Nat e l a 1 st f = k B k func F k B , l B a k N l a 1 st F
37 19 23 36 csbied2 φ p = P f = F d = D e = E d Func e / b k b k func f k b , l b a k d Nat e l a 1 st f = k B k func F k B , l B a k N l a 1 st F
38 14 18 37 csbied2 φ p = P f = F d = D 2 nd p / e d Func e / b k b k func f k b , l b a k d Nat e l a 1 st f = k B k func F k B , l B a k N l a 1 st F
39 9 13 38 csbied2 φ p = P f = F 1 st p / d 2 nd p / e d Func e / b k b k func f k b , l b a k d Nat e l a 1 st f = k B k func F k B , l B a k N l a 1 st F
40 4 elexd φ P V
41 3 elexd φ F V
42 opex k B k func F k B , l B a k N l a 1 st F V
43 42 a1i φ k B k func F k B , l B a k N l a 1 st F V
44 8 39 40 41 43 ovmpod Could not format ( ph -> ( P -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( P -o.F F ) = <. ( k e. B |-> ( k o.func F ) ) , ( k e. B , l e. B |-> ( a e. ( k N l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-