Metamath Proof Explorer


Theorem prdsdsval

Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
prdsplusgval.f φFB
prdsplusgval.g φGB
prdsdsval.d D=distY
Assertion prdsdsval φFDG=supranxIFxdistRxGx0*<

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 prdsplusgval.f φFB
7 prdsplusgval.g φGB
8 prdsdsval.d D=distY
9 fnex RFnIIWRV
10 5 4 9 syl2anc φRV
11 fndm RFnIdomR=I
12 5 11 syl φdomR=I
13 1 3 10 2 12 8 prdsds φD=fB,gBsupranxIfxdistRxgx0*<
14 fveq1 f=Ffx=Fx
15 fveq1 g=Ggx=Gx
16 14 15 oveqan12d f=Fg=GfxdistRxgx=FxdistRxGx
17 16 adantl φf=Fg=GfxdistRxgx=FxdistRxGx
18 17 mpteq2dv φf=Fg=GxIfxdistRxgx=xIFxdistRxGx
19 18 rneqd φf=Fg=GranxIfxdistRxgx=ranxIFxdistRxGx
20 19 uneq1d φf=Fg=GranxIfxdistRxgx0=ranxIFxdistRxGx0
21 20 supeq1d φf=Fg=GsupranxIfxdistRxgx0*<=supranxIFxdistRxGx0*<
22 xrltso <Or*
23 22 supex supranxIFxdistRxGx0*<V
24 23 a1i φsupranxIFxdistRxGx0*<V
25 13 21 6 7 24 ovmpod φFDG=supranxIFxdistRxGx0*<