Metamath Proof Explorer


Theorem prdsvscaval

Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsvscaval.t ·˙=Y
prdsvscaval.k K=BaseS
prdsvscaval.s φSV
prdsvscaval.i φIW
prdsvscaval.r φRFnI
prdsvscaval.f φFK
prdsvscaval.g φGB
Assertion prdsvscaval φF·˙G=xIFRxGx

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsvscaval.t ·˙=Y
4 prdsvscaval.k K=BaseS
5 prdsvscaval.s φSV
6 prdsvscaval.i φIW
7 prdsvscaval.r φRFnI
8 prdsvscaval.f φFK
9 prdsvscaval.g φGB
10 fnex RFnIIWRV
11 7 6 10 syl2anc φRV
12 7 fndmd φdomR=I
13 1 5 11 2 12 4 3 prdsvsca φ·˙=yK,zBxIyRxzx
14 id y=Fy=F
15 fveq1 z=Gzx=Gx
16 14 15 oveqan12d y=Fz=GyRxzx=FRxGx
17 16 adantl φy=Fz=GyRxzx=FRxGx
18 17 mpteq2dv φy=Fz=GxIyRxzx=xIFRxGx
19 6 mptexd φxIFRxGxV
20 13 18 8 9 19 ovmpod φF·˙G=xIFRxGx