Metamath Proof Explorer


Theorem preimaioomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaioomnf.1 φ F : A
preimaioomnf.2 φ B *
Assertion preimaioomnf φ F -1 −∞ B = x A | F x < B

Proof

Step Hyp Ref Expression
1 preimaioomnf.1 φ F : A
2 preimaioomnf.2 φ B *
3 1 ffund φ Fun F
4 1 frnd φ ran F
5 fimacnvinrn2 Fun F ran F F -1 −∞ B = F -1 −∞ B
6 3 4 5 syl2anc φ F -1 −∞ B = F -1 −∞ B
7 2 icomnfinre φ −∞ B = −∞ B
8 7 imaeq2d φ F -1 −∞ B = F -1 −∞ B
9 6 8 eqtr2d φ F -1 −∞ B = F -1 −∞ B
10 1 frexr φ F : A *
11 10 2 preimaicomnf φ F -1 −∞ B = x A | F x < B
12 9 11 eqtrd φ F -1 −∞ B = x A | F x < B