Metamath Proof Explorer


Theorem preimaioomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaioomnf.1 φF:A
preimaioomnf.2 φB*
Assertion preimaioomnf φF-1−∞B=xA|Fx<B

Proof

Step Hyp Ref Expression
1 preimaioomnf.1 φF:A
2 preimaioomnf.2 φB*
3 1 ffund φFunF
4 1 frnd φranF
5 fimacnvinrn2 FunFranFF-1−∞B=F-1−∞B
6 3 4 5 syl2anc φF-1−∞B=F-1−∞B
7 2 icomnfinre φ−∞B=−∞B
8 7 imaeq2d φF-1−∞B=F-1−∞B
9 6 8 eqtr2d φF-1−∞B=F-1−∞B
10 1 frexr φF:A*
11 10 2 preimaicomnf φF-1−∞B=xA|Fx<B
12 9 11 eqtrd φF-1−∞B=xA|Fx<B