Metamath Proof Explorer


Theorem pridl

Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypothesis pridl.1 H=2ndR
Assertion pridl RRingOpsPPrIdlRAIdlRBIdlRxAyBxHyPAPBP

Proof

Step Hyp Ref Expression
1 pridl.1 H=2ndR
2 eqid 1stR=1stR
3 eqid ran1stR=ran1stR
4 2 1 3 ispridl RRingOpsPPrIdlRPIdlRPran1stRaIdlRbIdlRxaybxHyPaPbP
5 df-3an PIdlRPran1stRaIdlRbIdlRxaybxHyPaPbPPIdlRPran1stRaIdlRbIdlRxaybxHyPaPbP
6 4 5 bitrdi RRingOpsPPrIdlRPIdlRPran1stRaIdlRbIdlRxaybxHyPaPbP
7 6 simplbda RRingOpsPPrIdlRaIdlRbIdlRxaybxHyPaPbP
8 raleq a=AxaybxHyPxAybxHyP
9 sseq1 a=AaPAP
10 9 orbi1d a=AaPbPAPbP
11 8 10 imbi12d a=AxaybxHyPaPbPxAybxHyPAPbP
12 raleq b=BybxHyPyBxHyP
13 12 ralbidv b=BxAybxHyPxAyBxHyP
14 sseq1 b=BbPBP
15 14 orbi2d b=BAPbPAPBP
16 13 15 imbi12d b=BxAybxHyPAPbPxAyBxHyPAPBP
17 11 16 rspc2v AIdlRBIdlRaIdlRbIdlRxaybxHyPaPbPxAyBxHyPAPBP
18 7 17 syl5com RRingOpsPPrIdlRAIdlRBIdlRxAyBxHyPAPBP
19 18 expd RRingOpsPPrIdlRAIdlRBIdlRxAyBxHyPAPBP
20 19 3imp2 RRingOpsPPrIdlRAIdlRBIdlRxAyBxHyPAPBP