Metamath Proof Explorer


Theorem pridlidl

Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Assertion pridlidl RRingOpsPPrIdlRPIdlR

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid 2ndR=2ndR
3 eqid ran1stR=ran1stR
4 1 2 3 ispridl RRingOpsPPrIdlRPIdlRPran1stRaIdlRbIdlRxaybx2ndRyPaPbP
5 3anass PIdlRPran1stRaIdlRbIdlRxaybx2ndRyPaPbPPIdlRPran1stRaIdlRbIdlRxaybx2ndRyPaPbP
6 4 5 bitrdi RRingOpsPPrIdlRPIdlRPran1stRaIdlRbIdlRxaybx2ndRyPaPbP
7 6 simprbda RRingOpsPPrIdlRPIdlR