Metamath Proof Explorer


Theorem pridlidl

Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Assertion pridlidl R RingOps P PrIdl R P Idl R

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid 2 nd R = 2 nd R
3 eqid ran 1 st R = ran 1 st R
4 1 2 3 ispridl R RingOps P PrIdl R P Idl R P ran 1 st R a Idl R b Idl R x a y b x 2 nd R y P a P b P
5 3anass P Idl R P ran 1 st R a Idl R b Idl R x a y b x 2 nd R y P a P b P P Idl R P ran 1 st R a Idl R b Idl R x a y b x 2 nd R y P a P b P
6 4 5 bitrdi R RingOps P PrIdl R P Idl R P ran 1 st R a Idl R b Idl R x a y b x 2 nd R y P a P b P
7 6 simprbda R RingOps P PrIdl R P Idl R