Metamath Proof Explorer


Theorem pridlval

Description: The class of prime ideals of a ring R . (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses pridlval.1 G=1stR
pridlval.2 H=2ndR
pridlval.3 X=ranG
Assertion pridlval RRingOpsPrIdlR=iIdlR|iXaIdlRbIdlRxaybxHyiaibi

Proof

Step Hyp Ref Expression
1 pridlval.1 G=1stR
2 pridlval.2 H=2ndR
3 pridlval.3 X=ranG
4 fveq2 r=RIdlr=IdlR
5 fveq2 r=R1str=1stR
6 5 1 eqtr4di r=R1str=G
7 6 rneqd r=Rran1str=ranG
8 7 3 eqtr4di r=Rran1str=X
9 8 neeq2d r=Riran1striX
10 fveq2 r=R2ndr=2ndR
11 10 2 eqtr4di r=R2ndr=H
12 11 oveqd r=Rx2ndry=xHy
13 12 eleq1d r=Rx2ndryixHyi
14 13 2ralbidv r=Rxaybx2ndryixaybxHyi
15 14 imbi1d r=Rxaybx2ndryiaibixaybxHyiaibi
16 4 15 raleqbidv r=RbIdlrxaybx2ndryiaibibIdlRxaybxHyiaibi
17 4 16 raleqbidv r=RaIdlrbIdlrxaybx2ndryiaibiaIdlRbIdlRxaybxHyiaibi
18 9 17 anbi12d r=Riran1straIdlrbIdlrxaybx2ndryiaibiiXaIdlRbIdlRxaybxHyiaibi
19 4 18 rabeqbidv r=RiIdlr|iran1straIdlrbIdlrxaybx2ndryiaibi=iIdlR|iXaIdlRbIdlRxaybxHyiaibi
20 df-pridl PrIdl=rRingOpsiIdlr|iran1straIdlrbIdlrxaybx2ndryiaibi
21 fvex IdlRV
22 21 rabex iIdlR|iXaIdlRbIdlRxaybxHyiaibiV
23 19 20 22 fvmpt RRingOpsPrIdlR=iIdlR|iXaIdlRbIdlRxaybxHyiaibi