Metamath Proof Explorer


Theorem prjspnn0

Description: A projective point is nonempty. (Contributed by SN, 17-Jan-2025)

Ref Expression
Hypotheses prjspnssbas.p P=Nℙ𝕣𝕠𝕛nK
prjspnssbas.w W=KfreeLMod0N
prjspnssbas.b B=BaseW0W
prjspnssbas.n φN0
prjspnssbas.k φKDivRing
prjspnn0.a φAP
Assertion prjspnn0 φA

Proof

Step Hyp Ref Expression
1 prjspnssbas.p P=Nℙ𝕣𝕠𝕛nK
2 prjspnssbas.w W=KfreeLMod0N
3 prjspnssbas.b B=BaseW0W
4 prjspnssbas.n φN0
5 prjspnssbas.k φKDivRing
6 prjspnn0.a φAP
7 eqid xy|xByBlBaseKx=lWy=xy|xByBlBaseKx=lWy
8 eqid BaseK=BaseK
9 eqid W=W
10 7 2 3 8 9 5 prjspner φxy|xByBlBaseKx=lWyErB
11 erdm xy|xByBlBaseKx=lWyErBdomxy|xByBlBaseKx=lWy=B
12 10 11 syl φdomxy|xByBlBaseKx=lWy=B
13 7 2 3 8 9 prjspnval2 N0KDivRingNℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
14 4 5 13 syl2anc φNℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
15 1 14 eqtrid φP=B/xy|xByBlBaseKx=lWy
16 6 15 eleqtrd φAB/xy|xByBlBaseKx=lWy
17 elqsn0 domxy|xByBlBaseKx=lWy=BAB/xy|xByBlBaseKx=lWyA
18 12 16 17 syl2anc φA