Metamath Proof Explorer


Theorem prmidl2

Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Hypotheses prmidlval.1 B=BaseR
prmidlval.2 ·˙=R
Assertion prmidl2 Could not format assertion : No typesetting found for |- ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ ( P =/= B /\ A. x e. B A. y e. B ( ( x .x. y ) e. P -> ( x e. P \/ y e. P ) ) ) ) -> P e. ( PrmIdeal ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 prmidlval.1 B=BaseR
2 prmidlval.2 ·˙=R
3 simpr RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPxaybx·˙yP
4 simplrr RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPbLIdealR
5 eqid LIdealR=LIdealR
6 1 5 lidlss bLIdealRbB
7 4 6 syl RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPbB
8 simplrl RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPaLIdealR
9 1 5 lidlss aLIdealRaB
10 8 9 syl RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPaB
11 simpllr RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPxByBx·˙yPxPyP
12 ssralv aBxByBx·˙yPxPyPxayBx·˙yPxPyP
13 10 11 12 sylc RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPxayBx·˙yPxPyP
14 ssralv bByBx·˙yPxPyPybx·˙yPxPyP
15 14 ralimdv bBxayBx·˙yPxPyPxaybx·˙yPxPyP
16 7 13 15 sylc RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPxaybx·˙yPxPyP
17 r19.26-2 xaybx·˙yPx·˙yPxPyPxaybx·˙yPxaybx·˙yPxPyP
18 pm3.35 x·˙yPx·˙yPxPyPxPyP
19 18 2ralimi xaybx·˙yPx·˙yPxPyPxaybxPyP
20 17 19 sylbir xaybx·˙yPxaybx·˙yPxPyPxaybxPyP
21 3 16 20 syl2anc RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPxaybxPyP
22 2ralor xaybxPyPxaxPybyP
23 dfss3 aPxaxP
24 dfss3 bPybyP
25 23 24 orbi12i aPbPxaxPybyP
26 22 25 sylbb2 xaybxPyPaPbP
27 21 26 syl RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPaPbP
28 27 ex RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPaPbP
29 28 ralrimivva RRingPLIdealRPBxByBx·˙yPxPyPaLIdealRbLIdealRxaybx·˙yPaPbP
30 1 2 isprmidl Could not format ( R e. Ring -> ( P e. ( PrmIdeal ` R ) <-> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( P e. ( PrmIdeal ` R ) <-> ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) ) with typecode |-
31 30 biimpar Could not format ( ( R e. Ring /\ ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) -> P e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ ( P e. ( LIdeal ` R ) /\ P =/= B /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) ) -> P e. ( PrmIdeal ` R ) ) with typecode |-
32 31 3anassrs Could not format ( ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ P =/= B ) /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) -> P e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ P =/= B ) /\ A. a e. ( LIdeal ` R ) A. b e. ( LIdeal ` R ) ( A. x e. a A. y e. b ( x .x. y ) e. P -> ( a C_ P \/ b C_ P ) ) ) -> P e. ( PrmIdeal ` R ) ) with typecode |-
33 29 32 syldan Could not format ( ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ P =/= B ) /\ A. x e. B A. y e. B ( ( x .x. y ) e. P -> ( x e. P \/ y e. P ) ) ) -> P e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ P =/= B ) /\ A. x e. B A. y e. B ( ( x .x. y ) e. P -> ( x e. P \/ y e. P ) ) ) -> P e. ( PrmIdeal ` R ) ) with typecode |-
34 33 anasss Could not format ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ ( P =/= B /\ A. x e. B A. y e. B ( ( x .x. y ) e. P -> ( x e. P \/ y e. P ) ) ) ) -> P e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( R e. Ring /\ P e. ( LIdeal ` R ) ) /\ ( P =/= B /\ A. x e. B A. y e. B ( ( x .x. y ) e. P -> ( x e. P \/ y e. P ) ) ) ) -> P e. ( PrmIdeal ` R ) ) with typecode |-