Step |
Hyp |
Ref |
Expression |
1 |
|
inundif |
|
2 |
1
|
fveq2i |
|
3 |
|
simp1 |
|
4 |
|
domprobsiga |
|
5 |
|
inelsiga |
|
6 |
4 5
|
syl3an1 |
|
7 |
|
difelsiga |
|
8 |
4 7
|
syl3an1 |
|
9 |
|
inindif |
|
10 |
|
probun |
|
11 |
9 10
|
mpi |
|
12 |
3 6 8 11
|
syl3anc |
|
13 |
2 12
|
eqtr3id |
|
14 |
13
|
oveq1d |
|
15 |
|
unitsscn |
|
16 |
|
prob01 |
|
17 |
3 6 16
|
syl2anc |
|
18 |
15 17
|
sselid |
|
19 |
|
prob01 |
|
20 |
3 8 19
|
syl2anc |
|
21 |
15 20
|
sselid |
|
22 |
18 21
|
pncan2d |
|
23 |
14 22
|
eqtr2d |
|