Metamath Proof Explorer


Theorem probdif

Description: The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Assertion probdif P Prob A dom P B dom P P A B = P A P A B

Proof

Step Hyp Ref Expression
1 inundif A B A B = A
2 1 fveq2i P A B A B = P A
3 simp1 P Prob A dom P B dom P P Prob
4 domprobsiga P Prob dom P ran sigAlgebra
5 inelsiga dom P ran sigAlgebra A dom P B dom P A B dom P
6 4 5 syl3an1 P Prob A dom P B dom P A B dom P
7 difelsiga dom P ran sigAlgebra A dom P B dom P A B dom P
8 4 7 syl3an1 P Prob A dom P B dom P A B dom P
9 inindif A B A B =
10 probun P Prob A B dom P A B dom P A B A B = P A B A B = P A B + P A B
11 9 10 mpi P Prob A B dom P A B dom P P A B A B = P A B + P A B
12 3 6 8 11 syl3anc P Prob A dom P B dom P P A B A B = P A B + P A B
13 2 12 eqtr3id P Prob A dom P B dom P P A = P A B + P A B
14 13 oveq1d P Prob A dom P B dom P P A P A B = P A B + P A B - P A B
15 unitsscn 0 1
16 prob01 P Prob A B dom P P A B 0 1
17 3 6 16 syl2anc P Prob A dom P B dom P P A B 0 1
18 15 17 sselid P Prob A dom P B dom P P A B
19 prob01 P Prob A B dom P P A B 0 1
20 3 8 19 syl2anc P Prob A dom P B dom P P A B 0 1
21 15 20 sselid P Prob A dom P B dom P P A B
22 18 21 pncan2d P Prob A dom P B dom P P A B + P A B - P A B = P A B
23 14 22 eqtr2d P Prob A dom P B dom P P A B = P A P A B