Metamath Proof Explorer


Theorem psgn0fv0

Description: The permutation sign function for an empty set at an empty set is 1. (Contributed by AV, 27-Feb-2019)

Ref Expression
Assertion psgn0fv0 pmSgn=1

Proof

Step Hyp Ref Expression
1 0ex V
2 wrd0 WordranpmTrsp
3 eqid 0SymGrp=0SymGrp
4 3 gsum0 SymGrp=0SymGrp
5 eqid SymGrp=SymGrp
6 5 symgid VI=0SymGrp
7 1 6 ax-mp I=0SymGrp
8 res0 I=
9 7 8 eqtr3i 0SymGrp=
10 9 a1i VWordranpmTrsp0SymGrp=
11 4 10 eqtr2id VWordranpmTrsp=SymGrp
12 11 fveq2d VWordranpmTrsppmSgn=pmSgnSymGrp
13 eqid ranpmTrsp=ranpmTrsp
14 eqid pmSgn=pmSgn
15 5 13 14 psgnvalii VWordranpmTrsppmSgnSymGrp=1
16 hash0 =0
17 16 oveq2i 1=10
18 neg1cn 1
19 exp0 110=1
20 18 19 ax-mp 10=1
21 17 20 eqtri 1=1
22 21 a1i VWordranpmTrsp1=1
23 12 15 22 3eqtrd VWordranpmTrsppmSgn=1
24 1 2 23 mp2an pmSgn=1