Metamath Proof Explorer


Theorem psgnprfval1

Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0 D=12
psgnprfval.g G=SymGrpD
psgnprfval.b B=BaseG
psgnprfval.t T=ranpmTrspD
psgnprfval.n N=pmSgnD
Assertion psgnprfval1 N1122=1

Proof

Step Hyp Ref Expression
1 psgnprfval.0 D=12
2 psgnprfval.g G=SymGrpD
3 psgnprfval.b B=BaseG
4 psgnprfval.t T=ranpmTrspD
5 psgnprfval.n N=pmSgnD
6 prex 12V
7 1 6 eqeltri DV
8 2 symgid DVID=0G
9 7 8 ax-mp ID=0G
10 9 gsum0 G=ID
11 reseq2 D=12ID=I12
12 1ex 1V
13 2nn 2
14 residpr 1V2I12=1122
15 12 13 14 mp2an I12=1122
16 11 15 eqtrdi D=12ID=1122
17 1 16 ax-mp ID=1122
18 10 17 eqtr2i 1122=G
19 18 fveq2i N1122=NG
20 wrd0 WordT
21 2 4 5 psgnvalii DVWordTNG=1
22 7 20 21 mp2an NG=1
23 hash0 =0
24 23 oveq2i 1=10
25 neg1cn 1
26 exp0 110=1
27 25 26 ax-mp 10=1
28 24 27 eqtri 1=1
29 19 22 28 3eqtri N1122=1