Metamath Proof Explorer


Theorem psrbagsn

Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypothesis psrbag0.d D=f0I|f-1Fin
Assertion psrbagsn IVxIifx=K10D

Proof

Step Hyp Ref Expression
1 psrbag0.d D=f0I|f-1Fin
2 1nn0 10
3 0nn0 00
4 2 3 ifcli ifx=K100
5 4 a1i xIifx=K100
6 5 fmpttd xIifx=K10:I0
7 6 mptru xIifx=K10:I0
8 eqid xIifx=K10=xIifx=K10
9 8 mptpreima xIifx=K10-1=xI|ifx=K10
10 snfi KFin
11 inss1 x|x=KIx|x=K
12 dfrab2 xI|x=K=x|x=KI
13 df-sn K=x|x=K
14 11 12 13 3sstr4i xI|x=KK
15 ssfi KFinxI|x=KKxI|x=KFin
16 10 14 15 mp2an xI|x=KFin
17 0nnn ¬0
18 iffalse ¬x=Kifx=K10=0
19 18 eleq1d ¬x=Kifx=K100
20 17 19 mtbiri ¬x=K¬ifx=K10
21 20 con4i ifx=K10x=K
22 21 a1i xIifx=K10x=K
23 22 ss2rabi xI|ifx=K10xI|x=K
24 ssfi xI|x=KFinxI|ifx=K10xI|x=KxI|ifx=K10Fin
25 16 23 24 mp2an xI|ifx=K10Fin
26 9 25 eqeltri xIifx=K10-1Fin
27 7 26 pm3.2i xIifx=K10:I0xIifx=K10-1Fin
28 1 psrbag IVxIifx=K10DxIifx=K10:I0xIifx=K10-1Fin
29 27 28 mpbiri IVxIifx=K10D