Metamath Proof Explorer


Theorem psrmulval

Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrmulr.s S=ImPwSerR
psrmulr.b B=BaseS
psrmulr.m ·˙=R
psrmulr.t ˙=S
psrmulr.d D=h0I|h-1Fin
psrmulfval.i φFB
psrmulfval.r φGB
psrmulval.r φXD
Assertion psrmulval φF˙GX=RkyD|yfXFk·˙GXfk

Proof

Step Hyp Ref Expression
1 psrmulr.s S=ImPwSerR
2 psrmulr.b B=BaseS
3 psrmulr.m ·˙=R
4 psrmulr.t ˙=S
5 psrmulr.d D=h0I|h-1Fin
6 psrmulfval.i φFB
7 psrmulfval.r φGB
8 psrmulval.r φXD
9 1 2 3 4 5 6 7 psrmulfval φF˙G=xDRkyD|yfxFk·˙Gxfk
10 9 fveq1d φF˙GX=xDRkyD|yfxFk·˙GxfkX
11 breq2 x=XyfxyfX
12 11 rabbidv x=XyD|yfx=yD|yfX
13 fvoveq1 x=XGxfk=GXfk
14 13 oveq2d x=XFk·˙Gxfk=Fk·˙GXfk
15 12 14 mpteq12dv x=XkyD|yfxFk·˙Gxfk=kyD|yfXFk·˙GXfk
16 15 oveq2d x=XRkyD|yfxFk·˙Gxfk=RkyD|yfXFk·˙GXfk
17 eqid xDRkyD|yfxFk·˙Gxfk=xDRkyD|yfxFk·˙Gxfk
18 ovex RkyD|yfXFk·˙GXfkV
19 16 17 18 fvmpt XDxDRkyD|yfxFk·˙GxfkX=RkyD|yfXFk·˙GXfk
20 8 19 syl φxDRkyD|yfxFk·˙GxfkX=RkyD|yfXFk·˙GXfk
21 10 20 eqtrd φF˙GX=RkyD|yfXFk·˙GXfk