Metamath Proof Explorer


Theorem psrnegcl

Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrgrp.s S=ImPwSerR
psrgrp.i φIV
psrgrp.r φRGrp
psrnegcl.d D=f0I|f-1Fin
psrnegcl.i N=invgR
psrnegcl.b B=BaseS
psrnegcl.z φXB
Assertion psrnegcl φNXB

Proof

Step Hyp Ref Expression
1 psrgrp.s S=ImPwSerR
2 psrgrp.i φIV
3 psrgrp.r φRGrp
4 psrnegcl.d D=f0I|f-1Fin
5 psrnegcl.i N=invgR
6 psrnegcl.b B=BaseS
7 psrnegcl.z φXB
8 eqid BaseR=BaseR
9 8 5 3 grpinvf1o φN:BaseR1-1 ontoBaseR
10 f1of N:BaseR1-1 ontoBaseRN:BaseRBaseR
11 9 10 syl φN:BaseRBaseR
12 1 8 4 6 7 psrelbas φX:DBaseR
13 fco N:BaseRBaseRX:DBaseRNX:DBaseR
14 11 12 13 syl2anc φNX:DBaseR
15 fvex BaseRV
16 ovex 0IV
17 4 16 rabex2 DV
18 15 17 elmap NXBaseRDNX:DBaseR
19 14 18 sylibr φNXBaseRD
20 1 8 4 6 2 psrbas φB=BaseRD
21 19 20 eleqtrrd φNXB