Metamath Proof Explorer


Theorem pthdepisspth

Description: A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 12-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion pthdepisspth FPathsGPP0PFFSPathsGP

Proof

Step Hyp Ref Expression
1 ispth FPathsGPFTrailsGPFunP1..^F-1P0FP1..^F=
2 simplll FTrailsGPFunP1..^F-1P0FP1..^F=P0PFFTrailsGP
3 trliswlk FTrailsGPFWalksGP
4 wlkcl FWalksGPF0
5 3 4 syl FTrailsGPF0
6 5 ad3antrrr FTrailsGPFunP1..^F-1P0FP1..^F=P0PFF0
7 eqid VtxG=VtxG
8 7 wlkp FWalksGPP:0FVtxG
9 3 8 syl FTrailsGPP:0FVtxG
10 9 ad3antrrr FTrailsGPFunP1..^F-1P0FP1..^F=P0PFP:0FVtxG
11 simpllr FTrailsGPFunP1..^F-1P0FP1..^F=P0PFFunP1..^F-1
12 simpr FTrailsGPFunP1..^F-1P0FP1..^F=P0PFP0PF
13 10 11 12 3jca FTrailsGPFunP1..^F-1P0FP1..^F=P0PFP:0FVtxGFunP1..^F-1P0PF
14 simplr FTrailsGPFunP1..^F-1P0FP1..^F=P0PFP0FP1..^F=
15 injresinj F0P:0FVtxGFunP1..^F-1P0PFP0FP1..^F=FunP-1
16 6 13 14 15 syl3c FTrailsGPFunP1..^F-1P0FP1..^F=P0PFFunP-1
17 2 16 jca FTrailsGPFunP1..^F-1P0FP1..^F=P0PFFTrailsGPFunP-1
18 17 ex3 FTrailsGPFunP1..^F-1P0FP1..^F=P0PFFTrailsGPFunP-1
19 1 18 sylbi FPathsGPP0PFFTrailsGPFunP-1
20 19 imp FPathsGPP0PFFTrailsGPFunP-1
21 isspth FSPathsGPFTrailsGPFunP-1
22 20 21 sylibr FPathsGPP0PFFSPathsGP