| Step | Hyp | Ref | Expression | 
						
							| 1 |  | canthwdom |  | 
						
							| 2 |  | 0ex |  | 
						
							| 3 |  | reldom |  | 
						
							| 4 | 3 | brrelex2i |  | 
						
							| 5 |  | djuexb |  | 
						
							| 6 | 4 5 | sylibr |  | 
						
							| 7 | 6 | simpld |  | 
						
							| 8 |  | xpsnen2g |  | 
						
							| 9 | 2 7 8 | sylancr |  | 
						
							| 10 |  | endom |  | 
						
							| 11 |  | domwdom |  | 
						
							| 12 |  | wdomtr |  | 
						
							| 13 | 12 | expcom |  | 
						
							| 14 | 9 10 11 13 | 4syl |  | 
						
							| 15 | 1 14 | mtoi |  | 
						
							| 16 |  | pwdjuen |  | 
						
							| 17 | 7 7 16 | syl2anc |  | 
						
							| 18 |  | domen1 |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | ibi |  | 
						
							| 21 |  | df-dju |  | 
						
							| 22 | 20 21 | breqtrdi |  | 
						
							| 23 |  | unxpwdom |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 24 | ord |  | 
						
							| 26 | 15 25 | mpd |  | 
						
							| 27 |  | 1on |  | 
						
							| 28 | 6 | simprd |  | 
						
							| 29 |  | xpsnen2g |  | 
						
							| 30 | 27 28 29 | sylancr |  | 
						
							| 31 |  | domentr |  | 
						
							| 32 | 26 30 31 | syl2anc |  |