Metamath Proof Explorer


Theorem pwfir

Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024)

Ref Expression
Assertion pwfir 𝒫BFinBFin

Proof

Step Hyp Ref Expression
1 df-ima xy|x𝒫By=x𝒫B=ranxy|x𝒫By=x𝒫B
2 relopab Relxy|x𝒫By=x
3 dmopabss domxy|x𝒫By=x𝒫B
4 relssres Relxy|x𝒫By=xdomxy|x𝒫By=x𝒫Bxy|x𝒫By=x𝒫B=xy|x𝒫By=x
5 2 3 4 mp2an xy|x𝒫By=x𝒫B=xy|x𝒫By=x
6 5 rneqi ranxy|x𝒫By=x𝒫B=ranxy|x𝒫By=x
7 rnopab ranxy|x𝒫By=x=y|xx𝒫By=x
8 eleq1 y=xy𝒫Bx𝒫B
9 8 biimparc x𝒫By=xy𝒫B
10 vex yV
11 10 snelpw yBy𝒫B
12 9 11 sylibr x𝒫By=xyB
13 12 exlimiv xx𝒫By=xyB
14 snelpwi yBy𝒫B
15 eqid y=y
16 eqeq2 x=yy=xy=y
17 16 rspcev y𝒫By=yx𝒫By=x
18 14 15 17 sylancl yBx𝒫By=x
19 df-rex x𝒫By=xxx𝒫By=x
20 18 19 sylib yBxx𝒫By=x
21 13 20 impbii xx𝒫By=xyB
22 21 abbii y|xx𝒫By=x=y|yB
23 abid2 y|yB=B
24 7 22 23 3eqtri ranxy|x𝒫By=x=B
25 1 6 24 3eqtri xy|x𝒫By=x𝒫B=B
26 funopab Funxy|x𝒫By=xx*yx𝒫By=x
27 mosneq *yy=x
28 27 moani *yx𝒫By=x
29 26 28 mpgbir Funxy|x𝒫By=x
30 imafi Funxy|x𝒫By=x𝒫BFinxy|x𝒫By=x𝒫BFin
31 29 30 mpan 𝒫BFinxy|x𝒫By=x𝒫BFin
32 25 31 eqeltrrid 𝒫BFinBFin