Metamath Proof Explorer


Theorem pwsbas

Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsbas.y Y=R𝑠I
pwsbas.f B=BaseR
Assertion pwsbas RVIWBI=BaseY

Proof

Step Hyp Ref Expression
1 pwsbas.y Y=R𝑠I
2 pwsbas.f B=BaseR
3 eqid ScalarR=ScalarR
4 1 3 pwsval RVIWY=ScalarR𝑠I×R
5 4 fveq2d RVIWBaseY=BaseScalarR𝑠I×R
6 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
7 fvexd RVIWScalarRV
8 simpr RVIWIW
9 snex RV
10 xpexg IWRVI×RV
11 8 9 10 sylancl RVIWI×RV
12 eqid BaseScalarR𝑠I×R=BaseScalarR𝑠I×R
13 snnzg RVR
14 13 adantr RVIWR
15 dmxp RdomI×R=I
16 14 15 syl RVIWdomI×R=I
17 6 7 11 12 16 prdsbas RVIWBaseScalarR𝑠I×R=xIBaseI×Rx
18 fvconst2g RVxII×Rx=R
19 18 fveq2d RVxIBaseI×Rx=BaseR
20 19 ralrimiva RVxIBaseI×Rx=BaseR
21 20 adantr RVIWxIBaseI×Rx=BaseR
22 ixpeq2 xIBaseI×Rx=BaseRxIBaseI×Rx=xIBaseR
23 21 22 syl RVIWxIBaseI×Rx=xIBaseR
24 17 23 eqtrd RVIWBaseScalarR𝑠I×R=xIBaseR
25 fvex BaseRV
26 ixpconstg IWBaseRVxIBaseR=BaseRI
27 8 25 26 sylancl RVIWxIBaseR=BaseRI
28 2 oveq1i BI=BaseRI
29 27 28 eqtr4di RVIWxIBaseR=BI
30 5 24 29 3eqtrrd RVIWBI=BaseY