Metamath Proof Explorer


Theorem pwsleval

Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Hypotheses pwsle.y Y=R𝑠I
pwsle.v B=BaseY
pwsle.o O=R
pwsle.l ˙=Y
pwsleval.r φRV
pwsleval.i φIW
pwsleval.a φFB
pwsleval.b φGB
Assertion pwsleval φF˙GxIFxOGx

Proof

Step Hyp Ref Expression
1 pwsle.y Y=R𝑠I
2 pwsle.v B=BaseY
3 pwsle.o O=R
4 pwsle.l ˙=Y
5 pwsleval.r φRV
6 pwsleval.i φIW
7 pwsleval.a φFB
8 pwsleval.b φGB
9 1 2 3 4 pwsle RVIW˙=rOB×B
10 5 6 9 syl2anc φ˙=rOB×B
11 10 breqd φF˙GFrOB×BG
12 brinxp FBGBFOfGFrOB×BG
13 7 8 12 syl2anc φFOfGFrOB×BG
14 eqid BaseR=BaseR
15 1 14 2 5 6 7 pwselbas φF:IBaseR
16 15 ffnd φFFnI
17 1 14 2 5 6 8 pwselbas φG:IBaseR
18 17 ffnd φGFnI
19 inidm II=I
20 eqidd φxIFx=Fx
21 eqidd φxIGx=Gx
22 16 18 7 8 19 20 21 ofrfvalg φFOfGxIFxOGx
23 11 13 22 3bitr2d φF˙GxIFxOGx