Metamath Proof Explorer


Theorem pwsms

Description: A power of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis pwsms.y Y=R𝑠I
Assertion pwsms RMetSpIFinYMetSp

Proof

Step Hyp Ref Expression
1 pwsms.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval RMetSpIFinY=ScalarR𝑠I×R
4 fvexd RMetSpIFinScalarRV
5 simpr RMetSpIFinIFin
6 fconst6g RMetSpI×R:IMetSp
7 6 adantr RMetSpIFinI×R:IMetSp
8 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
9 8 prdsms ScalarRVIFinI×R:IMetSpScalarR𝑠I×RMetSp
10 4 5 7 9 syl3anc RMetSpIFinScalarR𝑠I×RMetSp
11 3 10 eqeltrd RMetSpIFinYMetSp