Metamath Proof Explorer


Theorem pwsmulg

Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses pwsmulg.y โŠขY=Rโ†‘๐‘ I
pwsmulg.b โŠขB=BaseY
pwsmulg.s โŠขโˆ™ห™=โ‹…Y
pwsmulg.t โŠขยทห™=โ‹…R
Assertion pwsmulg โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’Nโˆ™ห™XโกA=Nยทห™XโกA

Proof

Step Hyp Ref Expression
1 pwsmulg.y โŠขY=Rโ†‘๐‘ I
2 pwsmulg.b โŠขB=BaseY
3 pwsmulg.s โŠขโˆ™ห™=โ‹…Y
4 pwsmulg.t โŠขยทห™=โ‹…R
5 simpll โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’RโˆˆMnd
6 simplr โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’IโˆˆV
7 simpr3 โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’AโˆˆI
8 1 2 pwspjmhm โŠขRโˆˆMndโˆงIโˆˆVโˆงAโˆˆIโ†’xโˆˆBโŸผxโกAโˆˆYMndHomR
9 5 6 7 8 syl3anc โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’xโˆˆBโŸผxโกAโˆˆYMndHomR
10 simpr1 โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’Nโˆˆโ„•0
11 simpr2 โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’XโˆˆB
12 2 3 4 mhmmulg โŠขxโˆˆBโŸผxโกAโˆˆYMndHomRโˆงNโˆˆโ„•0โˆงXโˆˆBโ†’xโˆˆBโŸผxโกAโกNโˆ™ห™X=Nยทห™xโˆˆBโŸผxโกAโกX
13 9 10 11 12 syl3anc โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’xโˆˆBโŸผxโกAโกNโˆ™ห™X=Nยทห™xโˆˆBโŸผxโกAโกX
14 1 pwsmnd โŠขRโˆˆMndโˆงIโˆˆVโ†’YโˆˆMnd
15 14 adantr โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’YโˆˆMnd
16 2 3 15 10 11 mulgnn0cld โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’Nโˆ™ห™XโˆˆB
17 fveq1 โŠขx=Nโˆ™ห™Xโ†’xโกA=Nโˆ™ห™XโกA
18 eqid โŠขxโˆˆBโŸผxโกA=xโˆˆBโŸผxโกA
19 fvex โŠขNโˆ™ห™XโกAโˆˆV
20 17 18 19 fvmpt โŠขNโˆ™ห™XโˆˆBโ†’xโˆˆBโŸผxโกAโกNโˆ™ห™X=Nโˆ™ห™XโกA
21 16 20 syl โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’xโˆˆBโŸผxโกAโกNโˆ™ห™X=Nโˆ™ห™XโกA
22 fveq1 โŠขx=Xโ†’xโกA=XโกA
23 fvex โŠขXโกAโˆˆV
24 22 18 23 fvmpt โŠขXโˆˆBโ†’xโˆˆBโŸผxโกAโกX=XโกA
25 11 24 syl โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’xโˆˆBโŸผxโกAโกX=XโกA
26 25 oveq2d โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’Nยทห™xโˆˆBโŸผxโกAโกX=Nยทห™XโกA
27 13 21 26 3eqtr3d โŠขRโˆˆMndโˆงIโˆˆVโˆงNโˆˆโ„•0โˆงXโˆˆBโˆงAโˆˆIโ†’Nโˆ™ห™XโกA=Nยทห™XโกA