Metamath Proof Explorer


Theorem pwsxms

Description: A power of an extended metric space is an extended metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis pwsms.y Y=R𝑠I
Assertion pwsxms R∞MetSpIFinY∞MetSp

Proof

Step Hyp Ref Expression
1 pwsms.y Y=R𝑠I
2 eqid ScalarR=ScalarR
3 1 2 pwsval R∞MetSpIFinY=ScalarR𝑠I×R
4 fvexd R∞MetSpIFinScalarRV
5 simpr R∞MetSpIFinIFin
6 fconst6g R∞MetSpI×R:I∞MetSp
7 6 adantr R∞MetSpIFinI×R:I∞MetSp
8 eqid ScalarR𝑠I×R=ScalarR𝑠I×R
9 8 prdsxms ScalarRVIFinI×R:I∞MetSpScalarR𝑠I×R∞MetSp
10 4 5 7 9 syl3anc R∞MetSpIFinScalarR𝑠I×R∞MetSp
11 3 10 eqeltrd R∞MetSpIFinY∞MetSp