Metamath Proof Explorer


Theorem qsalrel

Description: The quotient set is equal to the singleton of A when all elements are related and A is nonempty. (Contributed by SN, 8-Jun-2023)

Ref Expression
Hypotheses qsalrel.1 φxAyAx˙y
qsalrel.2 φ˙ErA
qsalrel.3 φNA
Assertion qsalrel φA/˙=A

Proof

Step Hyp Ref Expression
1 qsalrel.1 φxAyAx˙y
2 qsalrel.2 φ˙ErA
3 qsalrel.3 φNA
4 dfqs2 A/˙=ranaAa˙
5 2 adantr φaA˙ErA
6 1 ralrimivva φxAyAx˙y
7 6 adantr φaAxAyAx˙y
8 simpr φaAaA
9 breq1 x=ax˙ya˙y
10 9 ralbidv x=ayAx˙yyAa˙y
11 10 adantl φaAx=ayAx˙yyAa˙y
12 8 11 rspcdv φaAxAyAx˙yyAa˙y
13 breq2 y=Na˙ya˙N
14 13 adantl φy=Na˙ya˙N
15 3 14 rspcdv φyAa˙ya˙N
16 15 adantr φaAyAa˙ya˙N
17 12 16 syld φaAxAyAx˙ya˙N
18 7 17 mpd φaAa˙N
19 5 18 erthi φaAa˙=N˙
20 19 mpteq2dva φaAa˙=aAN˙
21 20 rneqd φranaAa˙=ranaAN˙
22 eqid aAN˙=aAN˙
23 3 ne0d φA
24 22 23 rnmptc φranaAN˙=N˙
25 2 ecss φN˙A
26 5 18 ersym φaAN˙a
27 3 adantr φaANA
28 elecg aANAaN˙N˙a
29 8 27 28 syl2anc φaAaN˙N˙a
30 26 29 mpbird φaAaN˙
31 25 30 eqelssd φN˙=A
32 31 sneqd φN˙=A
33 21 24 32 3eqtrd φranaAa˙=A
34 4 33 eqtrid φA/˙=A