Description: The quotient set is equal to the singleton of A when all elements are related and A is nonempty. (Contributed by SN, 8-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qsalrel.1 | |
|
qsalrel.2 | |
||
qsalrel.3 | |
||
Assertion | qsalrel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsalrel.1 | |
|
2 | qsalrel.2 | |
|
3 | qsalrel.3 | |
|
4 | dfqs2 | |
|
5 | 2 | adantr | |
6 | 1 | ralrimivva | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | breq1 | |
|
10 | 9 | ralbidv | |
11 | 10 | adantl | |
12 | 8 11 | rspcdv | |
13 | breq2 | |
|
14 | 13 | adantl | |
15 | 3 14 | rspcdv | |
16 | 15 | adantr | |
17 | 12 16 | syld | |
18 | 7 17 | mpd | |
19 | 5 18 | erthi | |
20 | 19 | mpteq2dva | |
21 | 20 | rneqd | |
22 | eqid | |
|
23 | 3 | ne0d | |
24 | 22 23 | rnmptc | |
25 | 2 | ecss | |
26 | 5 18 | ersym | |
27 | 3 | adantr | |
28 | elecg | |
|
29 | 8 27 28 | syl2anc | |
30 | 26 29 | mpbird | |
31 | 25 30 | eqelssd | |
32 | 31 | sneqd | |
33 | 21 24 32 | 3eqtrd | |
34 | 4 33 | eqtrid | |