Metamath Proof Explorer


Theorem qtopval

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 X=J
Assertion qtopval JVFWJqTopF=s𝒫FX|F-1sXJ

Proof

Step Hyp Ref Expression
1 qtopval.1 X=J
2 elex JVJV
3 elex FWFV
4 imaexg FVFXV
5 pwexg FXV𝒫FXV
6 rabexg 𝒫FXVs𝒫FX|F-1sXJV
7 4 5 6 3syl FVs𝒫FX|F-1sXJV
8 7 adantl JVFVs𝒫FX|F-1sXJV
9 simpr j=Jf=Ff=F
10 simpl j=Jf=Fj=J
11 10 unieqd j=Jf=Fj=J
12 11 1 eqtr4di j=Jf=Fj=X
13 9 12 imaeq12d j=Jf=Ffj=FX
14 13 pweqd j=Jf=F𝒫fj=𝒫FX
15 9 cnveqd j=Jf=Ff-1=F-1
16 15 imaeq1d j=Jf=Ff-1s=F-1s
17 16 12 ineq12d j=Jf=Ff-1sj=F-1sX
18 17 10 eleq12d j=Jf=Ff-1sjjF-1sXJ
19 14 18 rabeqbidv j=Jf=Fs𝒫fj|f-1sjj=s𝒫FX|F-1sXJ
20 df-qtop qTop=jV,fVs𝒫fj|f-1sjj
21 19 20 ovmpoga JVFVs𝒫FX|F-1sXJVJqTopF=s𝒫FX|F-1sXJ
22 8 21 mpd3an3 JVFVJqTopF=s𝒫FX|F-1sXJ
23 2 3 22 syl2an JVFWJqTopF=s𝒫FX|F-1sXJ