Metamath Proof Explorer


Theorem qus1

Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses qusring.u U=R/𝑠R~QGS
qusring.i I=2IdealR
qus1.o 1˙=1R
Assertion qus1 RRingSIURing1˙R~QGS=1U

Proof

Step Hyp Ref Expression
1 qusring.u U=R/𝑠R~QGS
2 qusring.i I=2IdealR
3 qus1.o 1˙=1R
4 1 a1i RRingSIU=R/𝑠R~QGS
5 eqid BaseR=BaseR
6 5 a1i RRingSIBaseR=BaseR
7 eqid +R=+R
8 eqid R=R
9 eqid LIdealR=LIdealR
10 eqid opprR=opprR
11 eqid LIdealopprR=LIdealopprR
12 9 10 11 2 2idlval I=LIdealRLIdealopprR
13 12 elin2 SISLIdealRSLIdealopprR
14 13 simplbi SISLIdealR
15 9 lidlsubg RRingSLIdealRSSubGrpR
16 14 15 sylan2 RRingSISSubGrpR
17 eqid R~QGS=R~QGS
18 5 17 eqger SSubGrpRR~QGSErBaseR
19 16 18 syl RRingSIR~QGSErBaseR
20 ringabl RRingRAbel
21 20 adantr RRingSIRAbel
22 ablnsg RAbelNrmSGrpR=SubGrpR
23 21 22 syl RRingSINrmSGrpR=SubGrpR
24 16 23 eleqtrrd RRingSISNrmSGrpR
25 5 17 7 eqgcpbl SNrmSGrpRaR~QGScbR~QGSda+RbR~QGSc+Rd
26 24 25 syl RRingSIaR~QGScbR~QGSda+RbR~QGSc+Rd
27 5 17 2 8 2idlcpbl RRingSIaR~QGScbR~QGSdaRbR~QGScRd
28 simpl RRingSIRRing
29 4 6 7 8 3 19 26 27 28 qusring2 RRingSIURing1˙R~QGS=1U