Description: If Y is a subgroup of the abelian group G , then H = G / Y is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qusabl.h | |
|
Assertion | qusabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusabl.h | |
|
2 | ablnsg | |
|
3 | 2 | eleq2d | |
4 | 3 | biimpar | |
5 | 1 | qusgrp | |
6 | 4 5 | syl | |
7 | vex | |
|
8 | 7 | elqs | |
9 | 1 | a1i | |
10 | eqidd | |
|
11 | ovexd | |
|
12 | simpl | |
|
13 | 9 10 11 12 | qusbas | |
14 | 13 | eleq2d | |
15 | 8 14 | bitr3id | |
16 | vex | |
|
17 | 16 | elqs | |
18 | 13 | eleq2d | |
19 | 17 18 | bitr3id | |
20 | 15 19 | anbi12d | |
21 | reeanv | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 22 23 | ablcom | |
25 | 24 | 3expb | |
26 | 25 | adantlr | |
27 | 26 | eceq1d | |
28 | 4 | adantr | |
29 | simprl | |
|
30 | simprr | |
|
31 | eqid | |
|
32 | 1 22 23 31 | qusadd | |
33 | 28 29 30 32 | syl3anc | |
34 | 1 22 23 31 | qusadd | |
35 | 28 30 29 34 | syl3anc | |
36 | 27 33 35 | 3eqtr4d | |
37 | oveq12 | |
|
38 | oveq12 | |
|
39 | 38 | ancoms | |
40 | 37 39 | eqeq12d | |
41 | 36 40 | syl5ibrcom | |
42 | 41 | rexlimdvva | |
43 | 21 42 | biimtrrid | |
44 | 20 43 | sylbird | |
45 | 44 | ralrimivv | |
46 | eqid | |
|
47 | 46 31 | isabl2 | |
48 | 6 45 47 | sylanbrc | |