| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusabl.h |
|
| 2 |
|
ablnsg |
|
| 3 |
2
|
eleq2d |
|
| 4 |
3
|
biimpar |
|
| 5 |
1
|
qusgrp |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
vex |
|
| 8 |
7
|
elqs |
|
| 9 |
1
|
a1i |
|
| 10 |
|
eqidd |
|
| 11 |
|
ovexd |
|
| 12 |
|
simpl |
|
| 13 |
9 10 11 12
|
qusbas |
|
| 14 |
13
|
eleq2d |
|
| 15 |
8 14
|
bitr3id |
|
| 16 |
|
vex |
|
| 17 |
16
|
elqs |
|
| 18 |
13
|
eleq2d |
|
| 19 |
17 18
|
bitr3id |
|
| 20 |
15 19
|
anbi12d |
|
| 21 |
|
reeanv |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
22 23
|
ablcom |
|
| 25 |
24
|
3expb |
|
| 26 |
25
|
adantlr |
|
| 27 |
26
|
eceq1d |
|
| 28 |
4
|
adantr |
|
| 29 |
|
simprl |
|
| 30 |
|
simprr |
|
| 31 |
|
eqid |
|
| 32 |
1 22 23 31
|
qusadd |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
1 22 23 31
|
qusadd |
|
| 35 |
28 30 29 34
|
syl3anc |
|
| 36 |
27 33 35
|
3eqtr4d |
|
| 37 |
|
oveq12 |
|
| 38 |
|
oveq12 |
|
| 39 |
38
|
ancoms |
|
| 40 |
37 39
|
eqeq12d |
|
| 41 |
36 40
|
syl5ibrcom |
|
| 42 |
41
|
rexlimdvva |
|
| 43 |
21 42
|
biimtrrid |
|
| 44 |
20 43
|
sylbird |
|
| 45 |
44
|
ralrimivv |
|
| 46 |
|
eqid |
|
| 47 |
46 31
|
isabl2 |
|
| 48 |
6 45 47
|
sylanbrc |
|