Metamath Proof Explorer


Theorem qusabl

Description: If Y is a subgroup of the abelian group G , then H = G / Y is an abelian group. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypothesis qusabl.h H=G/𝑠G~QGS
Assertion qusabl GAbelSSubGrpGHAbel

Proof

Step Hyp Ref Expression
1 qusabl.h H=G/𝑠G~QGS
2 ablnsg GAbelNrmSGrpG=SubGrpG
3 2 eleq2d GAbelSNrmSGrpGSSubGrpG
4 3 biimpar GAbelSSubGrpGSNrmSGrpG
5 1 qusgrp SNrmSGrpGHGrp
6 4 5 syl GAbelSSubGrpGHGrp
7 vex xV
8 7 elqs xBaseG/G~QGSaBaseGx=aG~QGS
9 1 a1i GAbelSSubGrpGH=G/𝑠G~QGS
10 eqidd GAbelSSubGrpGBaseG=BaseG
11 ovexd GAbelSSubGrpGG~QGSV
12 simpl GAbelSSubGrpGGAbel
13 9 10 11 12 qusbas GAbelSSubGrpGBaseG/G~QGS=BaseH
14 13 eleq2d GAbelSSubGrpGxBaseG/G~QGSxBaseH
15 8 14 bitr3id GAbelSSubGrpGaBaseGx=aG~QGSxBaseH
16 vex yV
17 16 elqs yBaseG/G~QGSbBaseGy=bG~QGS
18 13 eleq2d GAbelSSubGrpGyBaseG/G~QGSyBaseH
19 17 18 bitr3id GAbelSSubGrpGbBaseGy=bG~QGSyBaseH
20 15 19 anbi12d GAbelSSubGrpGaBaseGx=aG~QGSbBaseGy=bG~QGSxBaseHyBaseH
21 reeanv aBaseGbBaseGx=aG~QGSy=bG~QGSaBaseGx=aG~QGSbBaseGy=bG~QGS
22 eqid BaseG=BaseG
23 eqid +G=+G
24 22 23 ablcom GAbelaBaseGbBaseGa+Gb=b+Ga
25 24 3expb GAbelaBaseGbBaseGa+Gb=b+Ga
26 25 adantlr GAbelSSubGrpGaBaseGbBaseGa+Gb=b+Ga
27 26 eceq1d GAbelSSubGrpGaBaseGbBaseGa+GbG~QGS=b+GaG~QGS
28 4 adantr GAbelSSubGrpGaBaseGbBaseGSNrmSGrpG
29 simprl GAbelSSubGrpGaBaseGbBaseGaBaseG
30 simprr GAbelSSubGrpGaBaseGbBaseGbBaseG
31 eqid +H=+H
32 1 22 23 31 qusadd SNrmSGrpGaBaseGbBaseGaG~QGS+HbG~QGS=a+GbG~QGS
33 28 29 30 32 syl3anc GAbelSSubGrpGaBaseGbBaseGaG~QGS+HbG~QGS=a+GbG~QGS
34 1 22 23 31 qusadd SNrmSGrpGbBaseGaBaseGbG~QGS+HaG~QGS=b+GaG~QGS
35 28 30 29 34 syl3anc GAbelSSubGrpGaBaseGbBaseGbG~QGS+HaG~QGS=b+GaG~QGS
36 27 33 35 3eqtr4d GAbelSSubGrpGaBaseGbBaseGaG~QGS+HbG~QGS=bG~QGS+HaG~QGS
37 oveq12 x=aG~QGSy=bG~QGSx+Hy=aG~QGS+HbG~QGS
38 oveq12 y=bG~QGSx=aG~QGSy+Hx=bG~QGS+HaG~QGS
39 38 ancoms x=aG~QGSy=bG~QGSy+Hx=bG~QGS+HaG~QGS
40 37 39 eqeq12d x=aG~QGSy=bG~QGSx+Hy=y+HxaG~QGS+HbG~QGS=bG~QGS+HaG~QGS
41 36 40 syl5ibrcom GAbelSSubGrpGaBaseGbBaseGx=aG~QGSy=bG~QGSx+Hy=y+Hx
42 41 rexlimdvva GAbelSSubGrpGaBaseGbBaseGx=aG~QGSy=bG~QGSx+Hy=y+Hx
43 21 42 biimtrrid GAbelSSubGrpGaBaseGx=aG~QGSbBaseGy=bG~QGSx+Hy=y+Hx
44 20 43 sylbird GAbelSSubGrpGxBaseHyBaseHx+Hy=y+Hx
45 44 ralrimivv GAbelSSubGrpGxBaseHyBaseHx+Hy=y+Hx
46 eqid BaseH=BaseH
47 46 31 isabl2 HAbelHGrpxBaseHyBaseHx+Hy=y+Hx
48 6 45 47 sylanbrc GAbelSSubGrpGHAbel