| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1omhf |
|
| 2 |
|
eleq2w2 |
|
| 3 |
|
eleq2w2 |
|
| 4 |
3
|
ralbidv |
|
| 5 |
4
|
anbi2d |
|
| 6 |
2 5
|
bibi12d |
|
| 7 |
1 6
|
mpbiri |
|
| 8 |
7
|
alrimiv |
|
| 9 |
|
biimp |
|
| 10 |
9
|
alimi |
|
| 11 |
|
simpr |
|
| 12 |
11
|
imim2i |
|
| 13 |
12
|
alimi |
|
| 14 |
|
df-ral |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
|
dftr5 |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
|
simpl |
|
| 19 |
18
|
imim2i |
|
| 20 |
19
|
alimi |
|
| 21 |
|
df-ss |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
|
trssfir1omregs |
|
| 24 |
17 22 23
|
syl2anc |
|
| 25 |
10 24
|
syl |
|
| 26 |
|
biimpr |
|
| 27 |
26
|
alimi |
|
| 28 |
|
eleq1w |
|
| 29 |
|
eleq1w |
|
| 30 |
28 29
|
imbi12d |
|
| 31 |
30
|
imbi2d |
|
| 32 |
|
ra4v |
|
| 33 |
|
r1omhf |
|
| 34 |
|
ralim |
|
| 35 |
34
|
anim2d |
|
| 36 |
33 35
|
biimtrid |
|
| 37 |
|
eleq1w |
|
| 38 |
|
eleq1w |
|
| 39 |
38
|
adantl |
|
| 40 |
|
simpl |
|
| 41 |
39 40
|
cbvraldva2 |
|
| 42 |
37 41
|
anbi12d |
|
| 43 |
|
eleq1w |
|
| 44 |
42 43
|
imbi12d |
|
| 45 |
44
|
spvv |
|
| 46 |
36 45
|
syl9r |
|
| 47 |
32 46
|
sylcom |
|
| 48 |
31 47
|
setinds2regs |
|
| 49 |
48
|
ssrdv |
|
| 50 |
27 49
|
syl |
|
| 51 |
25 50
|
eqssd |
|
| 52 |
8 51
|
impbii |
|