Metamath Proof Explorer


Theorem r1omhfbregs

Description: The class of all hereditarily finite sets is the only class with the property that all sets are members of it iff they are finite and all of their elements are members of it. This version of r1omhfb replaces setinds2 with setinds2regs and trssfir1om with trssfir1omregs . (Contributed by BTernaryTau, 21-Jan-2026)

Ref Expression
Assertion r1omhfbregs ( 𝐻 = ( 𝑅1 “ ω ) ↔ ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 r1omhf ( 𝑥 ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
2 eleq2w2 ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑥𝐻𝑥 ( 𝑅1 “ ω ) ) )
3 eleq2w2 ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑦𝐻𝑦 ( 𝑅1 “ ω ) ) )
4 3 ralbidv ( 𝐻 = ( 𝑅1 “ ω ) → ( ∀ 𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
5 4 anbi2d ( 𝐻 = ( 𝑅1 “ ω ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) ) )
6 2 5 bibi12d ( 𝐻 = ( 𝑅1 “ ω ) → ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) ↔ ( 𝑥 ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) ) ) )
7 1 6 mpbiri ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
8 7 alrimiv ( 𝐻 = ( 𝑅1 “ ω ) → ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
9 biimp ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
10 9 alimi ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
11 simpr ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → ∀ 𝑦𝑥 𝑦𝐻 )
12 11 imim2i ( ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
13 12 alimi ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
14 df-ral ( ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑥 ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
15 13 14 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 )
16 dftr5 ( Tr 𝐻 ↔ ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 )
17 15 16 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → Tr 𝐻 )
18 simpl ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥 ∈ Fin )
19 18 imim2i ( ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻𝑥 ∈ Fin ) )
20 19 alimi ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻𝑥 ∈ Fin ) )
21 df-ss ( 𝐻 ⊆ Fin ↔ ∀ 𝑥 ( 𝑥𝐻𝑥 ∈ Fin ) )
22 20 21 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ⊆ Fin )
23 trssfir1omregs ( ( Tr 𝐻𝐻 ⊆ Fin ) → 𝐻 ( 𝑅1 “ ω ) )
24 17 22 23 syl2anc ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ( 𝑅1 “ ω ) )
25 10 24 syl ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ( 𝑅1 “ ω ) )
26 biimpr ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) )
27 26 alimi ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) )
28 eleq1w ( 𝑧 = 𝑤 → ( 𝑧 ( 𝑅1 “ ω ) ↔ 𝑤 ( 𝑅1 “ ω ) ) )
29 eleq1w ( 𝑧 = 𝑤 → ( 𝑧𝐻𝑤𝐻 ) )
30 28 29 imbi12d ( 𝑧 = 𝑤 → ( ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ↔ ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) )
31 30 imbi2d ( 𝑧 = 𝑤 → ( ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) ↔ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) ) )
32 ra4v ( ∀ 𝑤𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) )
33 r1omhf ( 𝑧 ( 𝑅1 “ ω ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) ) )
34 ralim ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) → ∀ 𝑤𝑧 𝑤𝐻 ) )
35 34 anim2d ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
36 33 35 biimtrid ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
37 eleq1w ( 𝑥 = 𝑧 → ( 𝑥 ∈ Fin ↔ 𝑧 ∈ Fin ) )
38 eleq1w ( 𝑦 = 𝑤 → ( 𝑦𝐻𝑤𝐻 ) )
39 38 adantl ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑦𝐻𝑤𝐻 ) )
40 simpl ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝑥 = 𝑧 )
41 39 40 cbvraldva2 ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑤𝑧 𝑤𝐻 ) )
42 37 41 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
43 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐻𝑧𝐻 ) )
44 42 43 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) ↔ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) → 𝑧𝐻 ) ) )
45 44 spvv ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) → 𝑧𝐻 ) )
46 36 45 syl9r ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) )
47 32 46 sylcom ( ∀ 𝑤𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) )
48 31 47 setinds2regs ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) )
49 48 ssrdv ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑅1 “ ω ) ⊆ 𝐻 )
50 27 49 syl ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑅1 “ ω ) ⊆ 𝐻 )
51 25 50 eqssd ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 = ( 𝑅1 “ ω ) )
52 8 51 impbii ( 𝐻 = ( 𝑅1 “ ω ) ↔ ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )