| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1omhf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 2 |
|
eleq2w2 |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( 𝑥 ∈ 𝐻 ↔ 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 3 |
|
eleq2w2 |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( 𝑦 ∈ 𝐻 ↔ 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 5 |
4
|
anbi2d |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) ) |
| 6 |
2 5
|
bibi12d |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ↔ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) ) ) |
| 7 |
1 6
|
mpbiri |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ) |
| 8 |
7
|
alrimiv |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) → ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ) |
| 9 |
|
biimp |
⊢ ( ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ) |
| 10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) |
| 12 |
11
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ∈ 𝐻 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) |
| 13 |
12
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) |
| 14 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) |
| 16 |
|
dftr5 |
⊢ ( Tr 𝐻 ↔ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) |
| 17 |
15 16
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → Tr 𝐻 ) |
| 18 |
|
simpl |
⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ Fin ) |
| 19 |
18
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ∈ 𝐻 → 𝑥 ∈ Fin ) ) |
| 20 |
19
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐻 → 𝑥 ∈ Fin ) ) |
| 21 |
|
df-ss |
⊢ ( 𝐻 ⊆ Fin ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐻 → 𝑥 ∈ Fin ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → 𝐻 ⊆ Fin ) |
| 23 |
|
trssfir1omregs |
⊢ ( ( Tr 𝐻 ∧ 𝐻 ⊆ Fin ) → 𝐻 ⊆ ∪ ( 𝑅1 “ ω ) ) |
| 24 |
17 22 23
|
syl2anc |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → 𝐻 ⊆ ∪ ( 𝑅1 “ ω ) ) |
| 25 |
10 24
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → 𝐻 ⊆ ∪ ( 𝑅1 “ ω ) ) |
| 26 |
|
biimpr |
⊢ ( ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) ) |
| 27 |
26
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) ) |
| 28 |
|
eleq1w |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) ↔ 𝑤 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 29 |
|
eleq1w |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻 ) ) |
| 30 |
28 29
|
imbi12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → 𝑧 ∈ 𝐻 ) ↔ ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → 𝑧 ∈ 𝐻 ) ) ↔ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) ) ) ) |
| 32 |
|
ra4v |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ∀ 𝑤 ∈ 𝑧 ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) ) ) |
| 33 |
|
r1omhf |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 34 |
|
ralim |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) → ( ∀ 𝑤 ∈ 𝑧 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) ) |
| 35 |
34
|
anim2d |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ ∪ ( 𝑅1 “ ω ) ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) ) ) |
| 36 |
33 35
|
biimtrid |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) ) ) |
| 37 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ Fin ↔ 𝑧 ∈ Fin ) ) |
| 38 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻 ) ) |
| 40 |
|
simpl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) |
| 41 |
39 40
|
cbvraldva2 |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) ) |
| 42 |
37 41
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) ) ) |
| 43 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐻 ↔ 𝑧 ∈ 𝐻 ) ) |
| 44 |
42 43
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) → 𝑧 ∈ 𝐻 ) ) ) |
| 45 |
44
|
spvv |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ∈ 𝐻 ) → 𝑧 ∈ 𝐻 ) ) |
| 46 |
36 45
|
syl9r |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( ∀ 𝑤 ∈ 𝑧 ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → 𝑧 ∈ 𝐻 ) ) ) |
| 47 |
32 46
|
sylcom |
⊢ ( ∀ 𝑤 ∈ 𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑤 ∈ ∪ ( 𝑅1 “ ω ) → 𝑤 ∈ 𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → 𝑧 ∈ 𝐻 ) ) ) |
| 48 |
31 47
|
setinds2regs |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ( 𝑧 ∈ ∪ ( 𝑅1 “ ω ) → 𝑧 ∈ 𝐻 ) ) |
| 49 |
48
|
ssrdv |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) → ∪ ( 𝑅1 “ ω ) ⊆ 𝐻 ) |
| 50 |
27 49
|
syl |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → ∪ ( 𝑅1 “ ω ) ⊆ 𝐻 ) |
| 51 |
25 50
|
eqssd |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) → 𝐻 = ∪ ( 𝑅1 “ ω ) ) |
| 52 |
8 51
|
impbii |
⊢ ( 𝐻 = ∪ ( 𝑅1 “ ω ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ) ) ) |