Metamath Proof Explorer


Theorem r1omhfbregs

Description: The class of all hereditarily finite sets is the only class with the property that all sets are members of it iff they are finite and all of their elements are members of it. (Contributed by BTernaryTau, 21-Jan-2026)

Ref Expression
Assertion r1omhfbregs ( 𝐻 = ( 𝑅1 “ ω ) ↔ ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 r1omhf ( 𝑥 ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
2 eleq2w2 ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑥𝐻𝑥 ( 𝑅1 “ ω ) ) )
3 eleq2w2 ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑦𝐻𝑦 ( 𝑅1 “ ω ) ) )
4 3 ralbidv ( 𝐻 = ( 𝑅1 “ ω ) → ( ∀ 𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
5 4 anbi2d ( 𝐻 = ( 𝑅1 “ ω ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) ) )
6 2 5 bibi12d ( 𝐻 = ( 𝑅1 “ ω ) → ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) ↔ ( 𝑥 ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) ) ) )
7 1 6 mpbiri ( 𝐻 = ( 𝑅1 “ ω ) → ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
8 7 alrimiv ( 𝐻 = ( 𝑅1 “ ω ) → ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
9 biimp ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
10 9 alimi ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )
11 simpr ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → ∀ 𝑦𝑥 𝑦𝐻 )
12 11 imim2i ( ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
13 12 alimi ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
14 df-ral ( ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑥 ( 𝑥𝐻 → ∀ 𝑦𝑥 𝑦𝐻 ) )
15 13 14 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 )
16 dftr5 ( Tr 𝐻 ↔ ∀ 𝑥𝐻𝑦𝑥 𝑦𝐻 )
17 15 16 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → Tr 𝐻 )
18 simpl ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥 ∈ Fin )
19 18 imim2i ( ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑥𝐻𝑥 ∈ Fin ) )
20 19 alimi ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( 𝑥𝐻𝑥 ∈ Fin ) )
21 df-ss ( 𝐻 ⊆ Fin ↔ ∀ 𝑥 ( 𝑥𝐻𝑥 ∈ Fin ) )
22 20 21 sylibr ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ⊆ Fin )
23 trssfir1omregs ( ( Tr 𝐻𝐻 ⊆ Fin ) → 𝐻 ( 𝑅1 “ ω ) )
24 17 22 23 syl2anc ( ∀ 𝑥 ( 𝑥𝐻 → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ( 𝑅1 “ ω ) )
25 10 24 syl ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 ( 𝑅1 “ ω ) )
26 biimpr ( ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) )
27 26 alimi ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) )
28 eleq1w ( 𝑧 = 𝑤 → ( 𝑧 ( 𝑅1 “ ω ) ↔ 𝑤 ( 𝑅1 “ ω ) ) )
29 eleq1w ( 𝑧 = 𝑤 → ( 𝑧𝐻𝑤𝐻 ) )
30 28 29 imbi12d ( 𝑧 = 𝑤 → ( ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ↔ ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) )
31 30 imbi2d ( 𝑧 = 𝑤 → ( ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) ↔ ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) ) )
32 ra4v ( ∀ 𝑤𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) )
33 r1omhf ( 𝑧 ( 𝑅1 “ ω ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) ) )
34 ralim ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) → ∀ 𝑤𝑧 𝑤𝐻 ) )
35 34 anim2d ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤 ( 𝑅1 “ ω ) ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
36 33 35 biimtrid ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
37 eleq1w ( 𝑥 = 𝑧 → ( 𝑥 ∈ Fin ↔ 𝑧 ∈ Fin ) )
38 eleq1w ( 𝑦 = 𝑤 → ( 𝑦𝐻𝑤𝐻 ) )
39 38 adantl ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑦𝐻𝑤𝐻 ) )
40 simpl ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝑥 = 𝑧 )
41 39 40 cbvraldva2 ( 𝑥 = 𝑧 → ( ∀ 𝑦𝑥 𝑦𝐻 ↔ ∀ 𝑤𝑧 𝑤𝐻 ) )
42 37 41 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ↔ ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) ) )
43 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐻𝑧𝐻 ) )
44 42 43 imbi12d ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) ↔ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) → 𝑧𝐻 ) ) )
45 44 spvv ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧 𝑤𝐻 ) → 𝑧𝐻 ) )
46 36 45 syl9r ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( ∀ 𝑤𝑧 ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) )
47 32 46 sylcom ( ∀ 𝑤𝑧 ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑤 ( 𝑅1 “ ω ) → 𝑤𝐻 ) ) → ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) ) )
48 31 47 setinds2regs ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑧 ( 𝑅1 “ ω ) → 𝑧𝐻 ) )
49 48 ssrdv ( ∀ 𝑥 ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) → 𝑥𝐻 ) → ( 𝑅1 “ ω ) ⊆ 𝐻 )
50 27 49 syl ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → ( 𝑅1 “ ω ) ⊆ 𝐻 )
51 25 50 eqssd ( ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) → 𝐻 = ( 𝑅1 “ ω ) )
52 8 51 impbii ( 𝐻 = ( 𝑅1 “ ω ) ↔ ∀ 𝑥 ( 𝑥𝐻 ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦𝐻 ) ) )