Metamath Proof Explorer


Theorem trssfir1omregs

Description: If every element in a transitive class is finite, then every element is also hereditarily finite. (Contributed by BTernaryTau, 20-Jan-2026)

Ref Expression
Assertion trssfir1omregs ( ( Tr 𝐴𝐴 ⊆ Fin ) → 𝐴 ( 𝑅1 “ ω ) )

Proof

Step Hyp Ref Expression
1 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
2 1 3anbi1d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) ↔ ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) ) )
3 eleq1w ( 𝑥 = 𝑦 → ( 𝑥 ( 𝑅1 “ ω ) ↔ 𝑦 ( 𝑅1 “ ω ) ) )
4 2 3 imbi12d ( 𝑥 = 𝑦 → ( ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ( 𝑅1 “ ω ) ) ↔ ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) ) )
5 ssel2 ( ( 𝐴 ⊆ Fin ∧ 𝑥𝐴 ) → 𝑥 ∈ Fin )
6 5 ancoms ( ( 𝑥𝐴𝐴 ⊆ Fin ) → 𝑥 ∈ Fin )
7 6 3adant2 ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ∈ Fin )
8 7 a1i ( ∀ 𝑦𝑥 ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) → ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ∈ Fin ) )
9 trel ( Tr 𝐴 → ( ( 𝑦𝑥𝑥𝐴 ) → 𝑦𝐴 ) )
10 9 expcomd ( Tr 𝐴 → ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐴 ) ) )
11 10 impcom ( ( 𝑥𝐴 ∧ Tr 𝐴 ) → ( 𝑦𝑥𝑦𝐴 ) )
12 11 3adant3 ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑦𝑥𝑦𝐴 ) )
13 simp2 ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → Tr 𝐴 )
14 13 a1d ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑦𝑥 → Tr 𝐴 ) )
15 simp3 ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝐴 ⊆ Fin )
16 15 a1d ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑦𝑥𝐴 ⊆ Fin ) )
17 12 14 16 3jcad ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑦𝑥 → ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) ) )
18 17 ralrimiv ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ∀ 𝑦𝑥 ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) )
19 ralim ( ∀ 𝑦𝑥 ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) → ( ∀ 𝑦𝑥 ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
20 18 19 syl5 ( ∀ 𝑦𝑥 ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) → ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
21 8 20 jcad ( ∀ 𝑦𝑥 ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) → ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) ) )
22 r1omhf ( 𝑥 ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦𝑥 𝑦 ( 𝑅1 “ ω ) ) )
23 21 22 imbitrrdi ( ∀ 𝑦𝑥 ( ( 𝑦𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑦 ( 𝑅1 “ ω ) ) → ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ( 𝑅1 “ ω ) ) )
24 4 23 setinds2regs ( ( 𝑥𝐴 ∧ Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ( 𝑅1 “ ω ) )
25 24 3expib ( 𝑥𝐴 → ( ( Tr 𝐴𝐴 ⊆ Fin ) → 𝑥 ( 𝑅1 “ ω ) ) )
26 25 com12 ( ( Tr 𝐴𝐴 ⊆ Fin ) → ( 𝑥𝐴𝑥 ( 𝑅1 “ ω ) ) )
27 26 ssrdv ( ( Tr 𝐴𝐴 ⊆ Fin ) → 𝐴 ( 𝑅1 “ ω ) )