| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 2 |
1
|
3anbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) ↔ ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) ) ) |
| 3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 4 |
2 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) ) |
| 5 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ Fin ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Fin ) |
| 6 |
5
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ Fin ) |
| 7 |
6
|
3adant2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ Fin ) |
| 8 |
7
|
a1i |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) → ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ Fin ) ) |
| 9 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) |
| 10 |
9
|
expcomd |
⊢ ( Tr 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
| 11 |
10
|
impcom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 13 |
|
simp2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → Tr 𝐴 ) |
| 14 |
13
|
a1d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑦 ∈ 𝑥 → Tr 𝐴 ) ) |
| 15 |
|
simp3 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝐴 ⊆ Fin ) |
| 16 |
15
|
a1d |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑦 ∈ 𝑥 → 𝐴 ⊆ Fin ) ) |
| 17 |
12 14 16
|
3jcad |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑦 ∈ 𝑥 → ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) ) ) |
| 18 |
17
|
ralrimiv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) ) |
| 19 |
|
ralim |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 20 |
18 19
|
syl5 |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) → ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 21 |
8 20
|
jcad |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) → ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) ) |
| 22 |
|
r1omhf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 23 |
21 22
|
imbitrrdi |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝑦 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑦 ∈ ∪ ( 𝑅1 “ ω ) ) → ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 24 |
4 23
|
setinds2regs |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) |
| 25 |
24
|
3expib |
⊢ ( 𝑥 ∈ 𝐴 → ( ( Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 26 |
25
|
com12 |
⊢ ( ( Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 27 |
26
|
ssrdv |
⊢ ( ( Tr 𝐴 ∧ 𝐴 ⊆ Fin ) → 𝐴 ⊆ ∪ ( 𝑅1 “ ω ) ) |