Metamath Proof Explorer


Theorem r1rankcld

Description: Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis r1rankcld.1 φAR1R
Assertion r1rankcld φrankAR1R

Proof

Step Hyp Ref Expression
1 r1rankcld.1 φAR1R
2 onssr1 RdomR1RR1R
3 2 adantl φRdomR1RR1R
4 rankr1ai AR1RrankAR
5 1 4 syl φrankAR
6 5 adantr φRdomR1rankAR
7 3 6 sseldd φRdomR1rankAR1R
8 1 adantr φ¬RdomR1AR1R
9 noel ¬A
10 9 a1i ¬RdomR1¬A
11 ndmfv ¬RdomR1R1R=
12 10 11 neleqtrrd ¬RdomR1¬AR1R
13 12 adantl φ¬RdomR1¬AR1R
14 8 13 pm2.21dd φ¬RdomR1rankAR1R
15 7 14 pm2.61dan φrankAR1R