Metamath Proof Explorer


Theorem rabsubmgmd

Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020)

Ref Expression
Hypotheses rabsubmgmd.b B=BaseM
rabsubmgmd.p +˙=+M
rabsubmgmd.m φMMgm
rabsubmgmd.cp φxByBθτη
rabsubmgmd.th z=xψθ
rabsubmgmd.ta z=yψτ
rabsubmgmd.et z=x+˙yψη
Assertion rabsubmgmd φzB|ψSubMgmM

Proof

Step Hyp Ref Expression
1 rabsubmgmd.b B=BaseM
2 rabsubmgmd.p +˙=+M
3 rabsubmgmd.m φMMgm
4 rabsubmgmd.cp φxByBθτη
5 rabsubmgmd.th z=xψθ
6 rabsubmgmd.ta z=yψτ
7 rabsubmgmd.et z=x+˙yψη
8 ssrab2 zB|ψB
9 8 a1i φzB|ψB
10 5 elrab xzB|ψxBθ
11 6 elrab yzB|ψyBτ
12 10 11 anbi12i xzB|ψyzB|ψxBθyBτ
13 3 adantr φxBθyBτMMgm
14 simprll φxBθyBτxB
15 simprrl φxBθyBτyB
16 1 2 mgmcl MMgmxByBx+˙yB
17 13 14 15 16 syl3anc φxBθyBτx+˙yB
18 simpl xBθxB
19 simpl yBτyB
20 18 19 anim12i xBθyBτxByB
21 simpr xBθθ
22 simpr yBττ
23 21 22 anim12i xBθyBτθτ
24 20 23 jca xBθyBτxByBθτ
25 24 4 sylan2 φxBθyBτη
26 7 17 25 elrabd φxBθyBτx+˙yzB|ψ
27 12 26 sylan2b φxzB|ψyzB|ψx+˙yzB|ψ
28 27 ralrimivva φxzB|ψyzB|ψx+˙yzB|ψ
29 1 2 issubmgm MMgmzB|ψSubMgmMzB|ψBxzB|ψyzB|ψx+˙yzB|ψ
30 3 29 syl φzB|ψSubMgmMzB|ψBxzB|ψyzB|ψx+˙yzB|ψ
31 9 28 30 mpbir2and φzB|ψSubMgmM