Description: Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabsubmgmd.b | |
|
rabsubmgmd.p | |
||
rabsubmgmd.m | |
||
rabsubmgmd.cp | |
||
rabsubmgmd.th | |
||
rabsubmgmd.ta | |
||
rabsubmgmd.et | |
||
Assertion | rabsubmgmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsubmgmd.b | |
|
2 | rabsubmgmd.p | |
|
3 | rabsubmgmd.m | |
|
4 | rabsubmgmd.cp | |
|
5 | rabsubmgmd.th | |
|
6 | rabsubmgmd.ta | |
|
7 | rabsubmgmd.et | |
|
8 | ssrab2 | |
|
9 | 8 | a1i | |
10 | 5 | elrab | |
11 | 6 | elrab | |
12 | 10 11 | anbi12i | |
13 | 3 | adantr | |
14 | simprll | |
|
15 | simprrl | |
|
16 | 1 2 | mgmcl | |
17 | 13 14 15 16 | syl3anc | |
18 | simpl | |
|
19 | simpl | |
|
20 | 18 19 | anim12i | |
21 | simpr | |
|
22 | simpr | |
|
23 | 21 22 | anim12i | |
24 | 20 23 | jca | |
25 | 24 4 | sylan2 | |
26 | 7 17 25 | elrabd | |
27 | 12 26 | sylan2b | |
28 | 27 | ralrimivva | |
29 | 1 2 | issubmgm | |
30 | 3 29 | syl | |
31 | 9 28 30 | mpbir2and | |