Metamath Proof Explorer


Theorem rankr1c

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankr1c A R1 On B = rank A ¬ A R1 B A R1 suc B

Proof

Step Hyp Ref Expression
1 id B = rank A B = rank A
2 rankdmr1 rank A dom R1
3 1 2 eqeltrdi B = rank A B dom R1
4 3 a1i A R1 On B = rank A B dom R1
5 elfvdm A R1 suc B suc B dom R1
6 r1funlim Fun R1 Lim dom R1
7 6 simpri Lim dom R1
8 limsuc Lim dom R1 B dom R1 suc B dom R1
9 7 8 ax-mp B dom R1 suc B dom R1
10 5 9 sylibr A R1 suc B B dom R1
11 10 adantl ¬ A R1 B A R1 suc B B dom R1
12 11 a1i A R1 On ¬ A R1 B A R1 suc B B dom R1
13 rankr1clem A R1 On B dom R1 ¬ A R1 B B rank A
14 rankr1ag A R1 On suc B dom R1 A R1 suc B rank A suc B
15 9 14 sylan2b A R1 On B dom R1 A R1 suc B rank A suc B
16 rankon rank A On
17 limord Lim dom R1 Ord dom R1
18 7 17 ax-mp Ord dom R1
19 ordelon Ord dom R1 B dom R1 B On
20 18 19 mpan B dom R1 B On
21 20 adantl A R1 On B dom R1 B On
22 onsssuc rank A On B On rank A B rank A suc B
23 16 21 22 sylancr A R1 On B dom R1 rank A B rank A suc B
24 15 23 bitr4d A R1 On B dom R1 A R1 suc B rank A B
25 13 24 anbi12d A R1 On B dom R1 ¬ A R1 B A R1 suc B B rank A rank A B
26 eqss B = rank A B rank A rank A B
27 25 26 syl6rbbr A R1 On B dom R1 B = rank A ¬ A R1 B A R1 suc B
28 27 ex A R1 On B dom R1 B = rank A ¬ A R1 B A R1 suc B
29 4 12 28 pm5.21ndd A R1 On B = rank A ¬ A R1 B A R1 suc B