Metamath Proof Explorer


Theorem ranksnb

Description: The rank of a singleton. Theorem 15.17(v) of Monk1 p. 112. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion ranksnb AR1OnrankA=sucrankA

Proof

Step Hyp Ref Expression
1 fveq2 y=Aranky=rankA
2 1 eleq1d y=ArankyxrankAx
3 2 ralsng AR1OnyArankyxrankAx
4 3 rabbidv AR1OnxOn|yArankyx=xOn|rankAx
5 4 inteqd AR1OnxOn|yArankyx=xOn|rankAx
6 snwf AR1OnAR1On
7 rankval3b AR1OnrankA=xOn|yArankyx
8 6 7 syl AR1OnrankA=xOn|yArankyx
9 rankon rankAOn
10 onsucmin rankAOnsucrankA=xOn|rankAx
11 9 10 mp1i AR1OnsucrankA=xOn|rankAx
12 5 8 11 3eqtr4d AR1OnrankA=sucrankA