Metamath Proof Explorer


Theorem rankvalb

Description: Value of the rank function. Definition 9.14 of TakeutiZaring p. 79 (proved as a theorem from our definition). This variant of rankval does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion rankvalb AR1OnrankA=xOn|AR1sucx

Proof

Step Hyp Ref Expression
1 df-rank rank=yVxOn|yR1sucx
2 eleq1 y=AyR1sucxAR1sucx
3 2 rabbidv y=AxOn|yR1sucx=xOn|AR1sucx
4 3 inteqd y=AxOn|yR1sucx=xOn|AR1sucx
5 elex AR1OnAV
6 rankwflemb AR1OnxOnAR1sucx
7 intexrab xOnAR1sucxxOn|AR1sucxV
8 6 7 sylbb AR1OnxOn|AR1sucxV
9 1 4 5 8 fvmptd3 AR1OnrankA=xOn|AR1sucx