Metamath Proof Explorer


Theorem rdgprc

Description: The value of the recursive definition generator when I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rdgprc ¬ I V rec F I = rec F

Proof

Step Hyp Ref Expression
1 fveq2 z = rec F I z = rec F I
2 fveq2 z = rec F z = rec F
3 1 2 eqeq12d z = rec F I z = rec F z rec F I = rec F
4 3 imbi2d z = ¬ I V rec F I z = rec F z ¬ I V rec F I = rec F
5 fveq2 z = y rec F I z = rec F I y
6 fveq2 z = y rec F z = rec F y
7 5 6 eqeq12d z = y rec F I z = rec F z rec F I y = rec F y
8 7 imbi2d z = y ¬ I V rec F I z = rec F z ¬ I V rec F I y = rec F y
9 fveq2 z = suc y rec F I z = rec F I suc y
10 fveq2 z = suc y rec F z = rec F suc y
11 9 10 eqeq12d z = suc y rec F I z = rec F z rec F I suc y = rec F suc y
12 11 imbi2d z = suc y ¬ I V rec F I z = rec F z ¬ I V rec F I suc y = rec F suc y
13 fveq2 z = x rec F I z = rec F I x
14 fveq2 z = x rec F z = rec F x
15 13 14 eqeq12d z = x rec F I z = rec F z rec F I x = rec F x
16 15 imbi2d z = x ¬ I V rec F I z = rec F z ¬ I V rec F I x = rec F x
17 rdgprc0 ¬ I V rec F I =
18 0ex V
19 18 rdg0 rec F =
20 17 19 eqtr4di ¬ I V rec F I = rec F
21 fveq2 rec F I y = rec F y F rec F I y = F rec F y
22 rdgsuc y On rec F I suc y = F rec F I y
23 rdgsuc y On rec F suc y = F rec F y
24 22 23 eqeq12d y On rec F I suc y = rec F suc y F rec F I y = F rec F y
25 21 24 syl5ibr y On rec F I y = rec F y rec F I suc y = rec F suc y
26 25 imim2d y On ¬ I V rec F I y = rec F y ¬ I V rec F I suc y = rec F suc y
27 r19.21v y z ¬ I V rec F I y = rec F y ¬ I V y z rec F I y = rec F y
28 limord Lim z Ord z
29 ordsson Ord z z On
30 rdgfnon rec F I Fn On
31 rdgfnon rec F Fn On
32 fvreseq rec F I Fn On rec F Fn On z On rec F I z = rec F z y z rec F I y = rec F y
33 30 31 32 mpanl12 z On rec F I z = rec F z y z rec F I y = rec F y
34 28 29 33 3syl Lim z rec F I z = rec F z y z rec F I y = rec F y
35 rneq rec F I z = rec F z ran rec F I z = ran rec F z
36 df-ima rec F I z = ran rec F I z
37 df-ima rec F z = ran rec F z
38 35 36 37 3eqtr4g rec F I z = rec F z rec F I z = rec F z
39 38 unieqd rec F I z = rec F z rec F I z = rec F z
40 vex z V
41 rdglim z V Lim z rec F I z = rec F I z
42 rdglim z V Lim z rec F z = rec F z
43 41 42 eqeq12d z V Lim z rec F I z = rec F z rec F I z = rec F z
44 40 43 mpan Lim z rec F I z = rec F z rec F I z = rec F z
45 39 44 syl5ibr Lim z rec F I z = rec F z rec F I z = rec F z
46 34 45 sylbird Lim z y z rec F I y = rec F y rec F I z = rec F z
47 46 imim2d Lim z ¬ I V y z rec F I y = rec F y ¬ I V rec F I z = rec F z
48 27 47 syl5bi Lim z y z ¬ I V rec F I y = rec F y ¬ I V rec F I z = rec F z
49 4 8 12 16 20 26 48 tfinds x On ¬ I V rec F I x = rec F x
50 49 com12 ¬ I V x On rec F I x = rec F x
51 50 ralrimiv ¬ I V x On rec F I x = rec F x
52 eqfnfv rec F I Fn On rec F Fn On rec F I = rec F x On rec F I x = rec F x
53 30 31 52 mp2an rec F I = rec F x On rec F I x = rec F x
54 51 53 sylibr ¬ I V rec F I = rec F