Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Other axiomatizations related to classical propositional calculus
Derive the Lukasiewicz axioms from the Russell-Bernays Axioms
re2luk3
Metamath Proof Explorer
Description: luk-3 derived from Russell-Bernays'.
This theorem, along with re1axmp , re2luk1 , and re2luk2 shows that
rb-ax1 , rb-ax2 , rb-ax3 , and rb-ax4 , along with anmp , can be
used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart , 19-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
re2luk3
⊢ φ → ¬ φ → ψ
Proof
Step
Hyp
Ref
Expression
1
rb-imdf
⊢ ¬ ¬ ¬ ¬ φ → ψ ∨ ¬ ¬ φ ∨ ψ ∨ ¬ ¬ ¬ ¬ φ ∨ ψ ∨ ¬ φ → ψ
2
1
rblem7
⊢ ¬ ¬ ¬ φ ∨ ψ ∨ ¬ φ → ψ
3
rb-ax4
⊢ ¬ ¬ φ ∨ ¬ φ ∨ ¬ φ
4
rb-ax3
⊢ ¬ ¬ φ ∨ ¬ φ ∨ ¬ φ
5
3 4
rbsyl
⊢ ¬ ¬ φ ∨ ¬ φ
6
rb-ax2
⊢ ¬ ¬ ¬ φ ∨ ¬ φ ∨ ¬ φ ∨ ¬ ¬ φ
7
5 6
anmp
⊢ ¬ φ ∨ ¬ ¬ φ
8
rblem2
⊢ ¬ ¬ φ ∨ ¬ ¬ φ ∨ ¬ φ ∨ ¬ ¬ φ ∨ ψ
9
7 8
anmp
⊢ ¬ φ ∨ ¬ ¬ φ ∨ ψ
10
2 9
rbsyl
⊢ ¬ φ ∨ ¬ φ → ψ
11
rb-imdf
⊢ ¬ ¬ ¬ φ → ¬ φ → ψ ∨ ¬ φ ∨ ¬ φ → ψ ∨ ¬ ¬ ¬ φ ∨ ¬ φ → ψ ∨ φ → ¬ φ → ψ
12
11
rblem7
⊢ ¬ ¬ φ ∨ ¬ φ → ψ ∨ φ → ¬ φ → ψ
13
10 12
anmp
⊢ φ → ¬ φ → ψ