Metamath Proof Explorer


Theorem re2luk3

Description: luk-3 derived from Russell-Bernays'.

This theorem, along with re1axmp , re2luk1 , and re2luk2 shows that rb-ax1 , rb-ax2 , rb-ax3 , and rb-ax4 , along with anmp , can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk3 φ¬φψ

Proof

Step Hyp Ref Expression
1 rb-imdf ¬¬¬¬φψ¬¬φψ¬¬¬¬φψ¬φψ
2 1 rblem7 ¬¬¬φψ¬φψ
3 rb-ax4 ¬¬φ¬φ¬φ
4 rb-ax3 ¬¬φ¬φ¬φ
5 3 4 rbsyl ¬¬φ¬φ
6 rb-ax2 ¬¬¬φ¬φ¬φ¬¬φ
7 5 6 anmp ¬φ¬¬φ
8 rblem2 ¬¬φ¬¬φ¬φ¬¬φψ
9 7 8 anmp ¬φ¬¬φψ
10 2 9 rbsyl ¬φ¬φψ
11 rb-imdf ¬¬¬φ¬φψ¬φ¬φψ¬¬¬φ¬φψφ¬φψ
12 11 rblem7 ¬¬φ¬φψφ¬φψ
13 10 12 anmp φ¬φψ