Metamath Proof Explorer


Theorem re2luk3

Description: luk-3 derived from Russell-Bernays'.

This theorem, along with re1axmp , re2luk1 , and re2luk2 shows that rb-ax1 , rb-ax2 , rb-ax3 , and rb-ax4 , along with anmp , can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion re2luk3 φ ¬ φ ψ

Proof

Step Hyp Ref Expression
1 rb-imdf ¬ ¬ ¬ ¬ φ ψ ¬ ¬ φ ψ ¬ ¬ ¬ ¬ φ ψ ¬ φ ψ
2 1 rblem7 ¬ ¬ ¬ φ ψ ¬ φ ψ
3 rb-ax4 ¬ ¬ φ ¬ φ ¬ φ
4 rb-ax3 ¬ ¬ φ ¬ φ ¬ φ
5 3 4 rbsyl ¬ ¬ φ ¬ φ
6 rb-ax2 ¬ ¬ ¬ φ ¬ φ ¬ φ ¬ ¬ φ
7 5 6 anmp ¬ φ ¬ ¬ φ
8 rblem2 ¬ ¬ φ ¬ ¬ φ ¬ φ ¬ ¬ φ ψ
9 7 8 anmp ¬ φ ¬ ¬ φ ψ
10 2 9 rbsyl ¬ φ ¬ φ ψ
11 rb-imdf ¬ ¬ ¬ φ ¬ φ ψ ¬ φ ¬ φ ψ ¬ ¬ ¬ φ ¬ φ ψ φ ¬ φ ψ
12 11 rblem7 ¬ ¬ φ ¬ φ ψ φ ¬ φ ψ
13 10 12 anmp φ ¬ φ ψ