Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Other axiomatizations related to classical propositional calculus Derive the Lukasiewicz axioms from the Russell-Bernays Axioms re2luk3  
				
		 
		
			
		 
		Description:   luk-3  derived from Russell-Bernays'.
     This theorem, along with re1axmp  , re2luk1  , and re2luk2  shows that
     rb-ax1  , rb-ax2  , rb-ax3  , and rb-ax4  , along with anmp  , can be
     used as a complete axiomatization of propositional calculus.  (Contributed by Anthony Hart , 19-Aug-2011)   (Proof modification is discouraged.) 
     (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					re2luk3    ⊢   φ   →    ¬   φ     →   ψ         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							rb-imdf  ⊢   ¬    ¬    ¬    ¬   φ     →   ψ      ∨    ¬   ¬   φ       ∨   ψ       ∨   ¬    ¬    ¬   ¬   φ       ∨   ψ      ∨    ¬   φ     →   ψ             
						
							2 
								1 
							 
							rblem7  ⊢    ¬    ¬   ¬   φ       ∨   ψ      ∨    ¬   φ     →   ψ        
						
							3 
								
							 
							rb-ax4  ⊢    ¬    ¬   φ     ∨   ¬   φ        ∨   ¬   φ         
						
							4 
								
							 
							rb-ax3  ⊢    ¬   ¬   φ       ∨    ¬   φ     ∨   ¬   φ          
						
							5 
								3  4 
							 
							rbsyl  ⊢    ¬   ¬   φ       ∨   ¬   φ         
						
							6 
								
							 
							rb-ax2  ⊢    ¬    ¬   ¬   φ       ∨   ¬   φ        ∨    ¬   φ     ∨   ¬   ¬   φ            
						
							7 
								5  6 
							 
							anmp  ⊢    ¬   φ     ∨   ¬   ¬   φ           
						
							8 
								
							 
							rblem2  ⊢    ¬    ¬   φ     ∨   ¬   ¬   φ          ∨    ¬   φ     ∨    ¬   ¬   φ       ∨   ψ         
						
							9 
								7  8 
							 
							anmp  ⊢    ¬   φ     ∨    ¬   ¬   φ       ∨   ψ        
						
							10 
								2  9 
							 
							rbsyl  ⊢    ¬   φ     ∨    ¬   φ     →   ψ        
						
							11 
								
							 
							rb-imdf  ⊢   ¬    ¬    ¬    φ   →    ¬   φ     →   ψ       ∨    ¬   φ     ∨    ¬   φ     →   ψ        ∨   ¬    ¬    ¬   φ     ∨    ¬   φ     →   ψ       ∨    φ   →    ¬   φ     →   ψ              
						
							12 
								11 
							 
							rblem7  ⊢    ¬    ¬   φ     ∨    ¬   φ     →   ψ       ∨    φ   →    ¬   φ     →   ψ         
						
							13 
								10  12 
							 
							anmp   ⊢   φ   →    ¬   φ     →   ψ