Metamath Proof Explorer


Theorem readdcan2

Description: Commuted version of readdcan without ax-mulcom . (Contributed by SN, 21-Feb-2024)

Ref Expression
Assertion readdcan2 A B C A + C = B + C A = B

Proof

Step Hyp Ref Expression
1 oveq1 A + C = B + C A + C + 0 - C = B + C + 0 - C
2 1 adantl A B C A + C = B + C A + C + 0 - C = B + C + 0 - C
3 simpl A C A
4 3 recnd A C A
5 simpr A C C
6 5 recnd A C C
7 rernegcl C 0 - C
8 7 adantl A C 0 - C
9 8 recnd A C 0 - C
10 4 6 9 addassd A C A + C + 0 - C = A + C + 0 - C
11 renegid C C + 0 - C = 0
12 11 oveq2d C A + C + 0 - C = A + 0
13 12 adantl A C A + C + 0 - C = A + 0
14 readdid1 A A + 0 = A
15 14 adantr A C A + 0 = A
16 10 13 15 3eqtrd A C A + C + 0 - C = A
17 16 3adant2 A B C A + C + 0 - C = A
18 17 adantr A B C A + C = B + C A + C + 0 - C = A
19 simpl B C B
20 19 recnd B C B
21 simpr B C C
22 21 recnd B C C
23 7 adantl B C 0 - C
24 23 recnd B C 0 - C
25 20 22 24 addassd B C B + C + 0 - C = B + C + 0 - C
26 11 oveq2d C B + C + 0 - C = B + 0
27 26 adantl B C B + C + 0 - C = B + 0
28 readdid1 B B + 0 = B
29 28 adantr B C B + 0 = B
30 25 27 29 3eqtrd B C B + C + 0 - C = B
31 30 3adant1 A B C B + C + 0 - C = B
32 31 adantr A B C A + C = B + C B + C + 0 - C = B
33 2 18 32 3eqtr3d A B C A + C = B + C A = B
34 33 ex A B C A + C = B + C A = B
35 oveq1 A = B A + C = B + C
36 34 35 impbid1 A B C A + C = B + C A = B