Metamath Proof Explorer


Theorem recgt0ii

Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses ltplus1.1 A
recgt0i.2 0<A
Assertion recgt0ii 0<1A

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 recgt0i.2 0<A
3 ax-1cn 1
4 1 recni A
5 ax-1ne0 10
6 1 2 gt0ne0ii A0
7 3 4 5 6 divne0i 1A0
8 7 nesymi ¬0=1A
9 0lt1 0<1
10 0re 0
11 1re 1
12 10 11 ltnsymi 0<1¬1<0
13 9 12 ax-mp ¬1<0
14 1 6 rereccli 1A
15 14 renegcli 1A
16 15 1 mulgt0i 0<1A0<A0<1AA
17 2 16 mpan2 0<1A0<1AA
18 14 recni 1A
19 18 4 mulneg1i 1AA=1AA
20 4 6 recidi A1A=1
21 4 18 20 mulcomli 1AA=1
22 21 negeqi 1AA=1
23 19 22 eqtri 1AA=1
24 17 23 breqtrdi 0<1A0<1
25 lt0neg1 1A1A<00<1A
26 14 25 ax-mp 1A<00<1A
27 lt0neg1 11<00<1
28 11 27 ax-mp 1<00<1
29 24 26 28 3imtr4i 1A<01<0
30 13 29 mto ¬1A<0
31 8 30 pm3.2ni ¬0=1A1A<0
32 axlttri 01A0<1A¬0=1A1A<0
33 10 14 32 mp2an 0<1A¬0=1A1A<0
34 31 33 mpbir 0<1A