Metamath Proof Explorer


Theorem recnz

Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion recnz A1<A¬1A

Proof

Step Hyp Ref Expression
1 recgt1i A1<A0<1A1A<1
2 1 simprd A1<A1A<1
3 1 simpld A1<A0<1A
4 zgt0ge1 1A0<1A11A
5 3 4 syl5ibcom A1<A1A11A
6 1re 1
7 0lt1 0<1
8 0re 0
9 lttr 01A0<11<A0<A
10 8 6 9 mp3an12 A0<11<A0<A
11 7 10 mpani A1<A0<A
12 11 imdistani A1<AA0<A
13 gt0ne0 A0<AA0
14 12 13 syl A1<AA0
15 rereccl AA01A
16 14 15 syldan A1<A1A
17 lenlt 11A11A¬1A<1
18 6 16 17 sylancr A1<A11A¬1A<1
19 5 18 sylibd A1<A1A¬1A<1
20 2 19 mt2d A1<A¬1A