Metamath Proof Explorer


Theorem recos4p

Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis efi4p.1 F=n0iAnn!
Assertion recos4p AcosA=1-A22+k4Fk

Proof

Step Hyp Ref Expression
1 efi4p.1 F=n0iAnn!
2 recosval AcosA=eiA
3 recn AA
4 1 efi4p AeiA=1A22+iAA36+k4Fk
5 3 4 syl AeiA=1A22+iAA36+k4Fk
6 5 fveq2d AeiA=1A22+iAA36+k4Fk
7 1re 1
8 resqcl AA2
9 8 rehalfcld AA22
10 resubcl 1A221A22
11 7 9 10 sylancr A1A22
12 11 recnd A1A22
13 ax-icn i
14 3nn0 30
15 reexpcl A30A3
16 14 15 mpan2 AA3
17 6re 6
18 6pos 0<6
19 17 18 gt0ne0ii 60
20 redivcl A3660A36
21 17 19 20 mp3an23 A3A36
22 16 21 syl AA36
23 resubcl AA36AA36
24 22 23 mpdan AAA36
25 24 recnd AAA36
26 mulcl iAA36iAA36
27 13 25 26 sylancr AiAA36
28 12 27 addcld A1-A22+iAA36
29 mulcl iAiA
30 13 3 29 sylancr AiA
31 4nn0 40
32 1 eftlcl iA40k4Fk
33 30 31 32 sylancl Ak4Fk
34 28 33 readdd A1A22+iAA36+k4Fk=1-A22+iAA36+k4Fk
35 11 24 crred A1-A22+iAA36=1A22
36 35 oveq1d A1-A22+iAA36+k4Fk=1-A22+k4Fk
37 6 34 36 3eqtrd AeiA=1-A22+k4Fk
38 2 37 eqtrd AcosA=1-A22+k4Fk