Metamath Proof Explorer


Theorem redwlklem

Description: Lemma for redwlk . (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)

Ref Expression
Assertion redwlklem FWordS1FP:0FVP0..^F:0F0..^F1V

Proof

Step Hyp Ref Expression
1 simpr FWordS1FP:0FVP:0FV
2 fzossfz 0..^F0F
3 fssres P:0FV0..^F0FP0..^F:0..^FV
4 1 2 3 sylancl FWordS1FP:0FVP0..^F:0..^FV
5 4 ex FWordS1FP:0FVP0..^F:0..^FV
6 lencl FWordSF0
7 6 nn0zd FWordSF
8 fzoval F0..^F=0F1
9 7 8 syl FWordS0..^F=0F1
10 9 adantr FWordS1F0..^F=0F1
11 wrdred1hash FWordS1FF0..^F1=F1
12 oveq2 F0..^F1=F10F0..^F1=0F1
13 12 eqeq2d F0..^F1=F10..^F=0F0..^F10..^F=0F1
14 11 13 syl FWordS1F0..^F=0F0..^F10..^F=0F1
15 10 14 mpbird FWordS1F0..^F=0F0..^F1
16 15 feq2d FWordS1FP0..^F:0..^FVP0..^F:0F0..^F1V
17 5 16 sylibd FWordS1FP:0FVP0..^F:0F0..^F1V
18 17 3impia FWordS1FP:0FVP0..^F:0F0..^F1V