Metamath Proof Explorer


Theorem relexpreld

Description: The exponentiation of a relation is a relation. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypotheses relexpreld.1 φRelR
relexpreld.2 φN0
Assertion relexpreld φRelRrN

Proof

Step Hyp Ref Expression
1 relexpreld.1 φRelR
2 relexpreld.2 φN0
3 2 adantr φRVN0
4 simpr φRVRV
5 1 adantr φRVRelR
6 relexprel N0RVRelRRelRrN
7 3 4 5 6 syl3anc φRVRelRrN
8 7 ex φRVRelRrN
9 rel0 Rel
10 reldmrelexp Reldomr
11 10 ovprc1 ¬RVRrN=
12 11 releqd ¬RVRelRrNRel
13 9 12 mpbiri ¬RVRelRrN
14 8 13 pm2.61d1 φRelRrN