Metamath Proof Explorer


Theorem relimasn

Description: The image of a singleton. (Contributed by NM, 20-May-1998)

Ref Expression
Assertion relimasn RelRRA=y|ARy

Proof

Step Hyp Ref Expression
1 snprc ¬AVA=
2 imaeq2 A=RA=R
3 1 2 sylbi ¬AVRA=R
4 ima0 R=
5 3 4 eqtrdi ¬AVRA=
6 5 adantl RelR¬AVRA=
7 brrelex1 RelRARyAV
8 7 stoic1a RelR¬AV¬ARy
9 8 nexdv RelR¬AV¬yARy
10 abn0 y|ARyyARy
11 10 necon1bbii ¬yARyy|ARy=
12 9 11 sylib RelR¬AVy|ARy=
13 6 12 eqtr4d RelR¬AVRA=y|ARy
14 13 ex RelR¬AVRA=y|ARy
15 imasng AVRA=y|ARy
16 14 15 pm2.61d2 RelRRA=y|ARy